Two wooden crates rest on top of one another. The smaller top crate has a mass of m1 = 25 kg and the larger bottom crate has a m
ass of m2 = 91 kg. There is NO friction between the crate and the floor, but the coefficient of static friction between the two crates is µs = 0.79 and the coefficient of kinetic friction between the two crates is µk = 0.62. A massless rope is attached to the lower crate to pull it horizontally to the right (which should be considered the positive direction for this problem).1)The rope is pulled with a tension T = 234 N (which is small enough that the top crate will not slide). What is the acceleration of the small crate?2)In the previous situation, what is the magnitude of the frictional force the lower crate exerts on the upper crate?3)What is the maximum tension that the lower crate can be pulled at before the upper crate begins to slide?4)The tension is increased in the rope to 1187 N causing the boxes to accelerate faster and the top box to begin sliding. What is the acceleration of the upper crate?m/s25)As the upper crate slides, what is the acceleration of the lower crate?
Let the bigger crate be in touch with the ground which is friction less. In the first case both m₁ and m₂ will move with common acceleration because m₁ is not sliding over m₂.
1 ) Common acceleration a = force / total mass
= 234 / ( 25 +91 )
= 2.017 m s⁻².
2 ) Force on m₁ accelerating it , which is nothing but friction force on it by m₂
= mass x acceleration
= 25 x 2.017
= 50.425 N
The same force will be applied by m₁ on m₂ as friction force which will act in opposite direction.
3 ) Maximum friction force that is possible between m₁ and m₂
= μ_s m₁g
= .79 x 25 x 9.8
= 193.55 N
Acceleration of m₁
= 193 .55 / 25
= 7.742 m s⁻²
This is the common acceleration in case of maximum tension required
So tension in rope
= ( 25 +91 ) x 7.742
= 898 N
4 ) In case of upper crate sliding on m₂ , maximum friction force on m₁
Earth's gravity is stronger at the poles than the equator for two reasons: The centrifugal "force" cancels out the gravity minimally, more so at the equator than at the poles.
We can work this exercise with the kinematics equations. In general the body is released so that its initial velocity is zero, the acceleration of the acceleration of gravity
v² = v₀² - 2 g (y -y₀)
v² = 0 - 2g (y -y₀)
when it hits the stone the height is zero and part of the height of the seagull I