I multiplied $15 by 230% and then added my answer(which was 34.5) because subtracting it wasn't an option and got $49.50
All you need to do is add all 7 job hours, and divide the total by 7. Your answer should be 7
Answer:
Check the explanation
Step-by-step explanation:
Let X denotes steel ball and Y denotes diamond
= 1/9( 50+57+......+51+53)
=530/9
=58.89
= 1/9( 52+ 56+....+ 51+ 56)
=543/9
=60.33
difference = d =(60.33- 58.89)
=1.44

s12 = 1/9( 502+572+......+512+532) -9/8 (58.89)2
=31686/8 - 9/8( 3468.03)
=3960.75 - 3901.53
=59.22
s1 = 7.69
s22 = 1/9( 522+ 562+....+ 512+ 562) -9/8 (60.33)2
=33295/8 - 9/8 (3640.11)
=4161.875 - 4095.12
=66.75
s2 =8.17
sample standard deviation for difference is
s=![\sqrt{[(n1-1)s_1^2+ (n2-1)s_2^2]/(n1+n2-2)}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B%28n1-1%29s_1%5E2%2B%20%28n2-1%29s_2%5E2%5D%2F%28n1%2Bn2-2%29%7D)
= ![\sqrt{[(9-1)*59.22+ (9-1)*66.75]/(9+9-2)}](https://tex.z-dn.net/?f=%5Csqrt%7B%5B%289-1%29%2A59.22%2B%20%289-1%29%2A66.75%5D%2F%289%2B9-2%29%7D)
= 
=7.93
sd = 
=
=7.93* 0.47
=3.74
For 95% confidence level
=1.96
confidence interval is

=(1.44 - 1.96* 3.75 , 1.44+1.96* 3.75)
=(1.44 - 7.35 , 1.44 + 7.35)
=(-2.31, 8.79)
There is sufficient evidence to conclude that the two indenters produce different hardness readings.
The total price she paid for the shirt was $27.03
Answer:
The expected monetary value of a single roll is $1.17.
Step-by-step explanation:
The sample space of rolling a die is:
S = {1, 2, 3, 4, 5 and 6}
The probability of rolling any of the six numbers is same, i.e.
P (1) = P (2) = P (3) = P (4) = P (5) = P (6) = 
The expected pay for rolling the numbers are as follows:
E (X = 1) = $3
E (X = 2) = $0
E (X = 3) = $0
E (X = 4) = $0
E (X = 5) = $0
E (X = 6) = $4
The expected value of an experiment is:

Compute the expected monetary value of a single roll as follows:
![E(X)=\sum x\cdot P(X=x)\\=[E(X=1)\times \frac{1}{6}]+[E(X=2)\times \frac{1}{6}]+[E(X=3)\times \frac{1}{6}]\\+[E(X=4)\times \frac{1}{6}]+[E(X=5)\times \frac{1}{6}]+[E(X=6)\times \frac{1}{6}]\\=[3\times \frac{1}{6}]+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]\\+[0\times \frac{1}{6}]+[0\times \frac{1}{6}]+[4\times \frac{1}{6}]\\=1.17](https://tex.z-dn.net/?f=E%28X%29%3D%5Csum%20x%5Ccdot%20P%28X%3Dx%29%5C%5C%3D%5BE%28X%3D1%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D2%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D3%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5BE%28X%3D4%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D5%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5BE%28X%3D6%29%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D%5B3%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B0%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%2B%5B4%5Ctimes%20%5Cfrac%7B1%7D%7B6%7D%5D%5C%5C%3D1.17)
Thus, the expected monetary value of a single roll is $1.17.