Answer:
For this experiment we are going to take plate 1 as the control plate, so, in it there will be just E. coli in LB/agar; in plate 2, we are going to put E. coli in LB/agar and some ampicillin. Then, we have to wait for the E. coli colonies to form. After a while, the E. coli growth can be compared on both plates and determine if ampicillin affects or not the E. coli colonies.
Explanation:
If the ampicillin affects negatively E. coli colonies, we are going to observe that in plate 1 (control plate) there are E. coli colonies growing, but in plate 2, there is no E. coli colonies or, at least, there is a fewer number of colonies on it. If ampicillin doesn't affect E.coli, plate 1 (control) and plate 2 (ampicillin experiment) are going to be similar in number of colonies.
Answer: 13.31 moles.
Explanation: So take 452 grams of Argon and multiply by the molar mass of Argon. Your units will cancel out, leaving you with moles of Argon.
Answer:
More energy is required to raise its temperature. Therefore, temperature does not stay the same when heat energy increases.
Answer:
Bottom line: A redshift reveals how an object in space (star/planet/galaxy) is moving compared to us. It lets astronomers measure a distance for the most distant (and therefore oldest) objects in our universe.
Explanation:
A redshift reveals how an object is moving in space and enables astronomers to discover otherwise-invisible planets and the movements of galaxies, and to uncover the beginnings of our universe.
They use a property called a "redshift" to describe the motion of an objects moving away from each other in space. Redshift occurs when an object emitting electromagnetic radiation recedes from an observer. The light detected appears "redder" than it should be because it is shifted toward the "red" end of the spectrum.Because the location of spectral features usually shifts to longer wavelengths -- towards the red end of the spectrum -- astronomers refer to this as the redshift of a galaxy. Take a look for yourself at the appearance of some very distant, very fast-moving galaxies in the Hubble Ultra-Deep Field .
hoped this helped a brainlist would be nice :)
Answer:
1.16 moles CO₂
Explanation:
To find the moles of CO₂, you need to (1) convert grams C₈H₁₈ to moles (via the molar mass) and then (2) convert moles C₈H₁₈ to moles CO₂ (via the mole-to-mole ratio from equation coefficients). It is important that the conversions/ratios are arranged in a way that allows for the cancellation of units. The final answer should have 3 significant figures like the given value.
Molar Mass (C₈H₁₈): 8(12.011 g/mol) + 18(1.008 g/mol)
Molar Mass (C₈H₁₈): 114.232 g/mol
2 C₈H₁₈ + 25 O₂ -----> 16 CO₂ + 18 H₂O
^ ^
16.6 g C₈H₁₈ 1 mole 16 moles CO₂
-------------------- x ----------------- x ------------------------- = 1.16 moles CO₂
114.232 g 2 moles C₈H₁₈