The alignments of the planets would be the correct answer.<span />
Given that the pancake mix can be used for the preparation of 10 pancakes. The other ingredients added to the pancake mix would be eggs, cheese, milk, salt and baking soda. If all of thee ingredients are added to the pan cake mix in required proportions, we can make 10 pan cakes. So, the theoretical yield will be 10 pancakes. But in real Sam was able to prepare only 8 pancakes. That means the number of pancakes produced was limited by the amount of other ingredients. So, the actual yield will be 8 pancakes.
Hence the correct answer B) Theoretical yield
Answer:
The volume for the ideal gas is: 4647.5 Liters
Explanation:
Formula for the Ideal Gases Law must be applied to solve this question:
P . V = n . R . T
We convert the T° to K → 100°C + 273 = 373 K
We convert pressure value from kPa to atm.
2 kPa . 1atm/101.3 kPa = 0.0197 atm
We replace data in the formula.
V = ( n . R . T) / P → (3 mol . 0.082 . 373K) / 0.0197 atm =
The volume for the ideal gas is: 4647.5 Liters
Answer:
The answers are in the explanation.
Explanation:
The energy required to convert 10g of ice at -10°C to water vapor at 120°C is obtained per stages as follows:
Increasing temperature of ice from -10°C - 0°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 2.06J/g°C, ΔT is change in temperature = 0°C - -10°C = 10°C and m is mass of ice = 10g
Q = 2.06J/g°C*10°C*10g
Q = 206J
Change from solid to liquid:
The heat of fusion of water is 333.55J/g. That means 1g of ice requires 333.55J to be converted in liquid. 10g requires:
Q = 333.55J/g*10g
Q = 3335.5J
Increasing temperature of liquid water from 0°C - 100°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 4.18J/g°C, ΔT is change in temperature = 100°C - 0°C = 100°C and m is mass of water = 10g
Q = 4.18J/g°C*100°C*10g
Q = 4180J
Change from liquid to gas:
The heat of vaporization of water is 2260J/g. That means 1g of liquid water requires 2260J to be converted in gas. 10g requires:
Q = 2260J/g*10g
Q = 22600J
Increasing temperature of gas water from 100°C - 120°C:
Q = S*ΔT*m
Q is energy, S specific heat of gaseous water = 1.87J/g°C, ΔT is change in temperature = 20°C and m is mass of water = 10g
Q = 1.87J/g°C*20°C*10g
Q = 374J
Total Energy:
206J + 3335.5 J + 4180J + 22600J + 374J =
30695.5J =
30.7kJ