1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLEGan [10]
3 years ago
13

When observing a group of children at a daycare center, Emily made the following observations: Five year old children played in

one location during independent play time. Three year old children moved between different activities, rather than staying in one location. By analyzing Emily’s observations, what could be a valid conclusion? a. Five-year-old children have longer attention spans than three-year-old children. b. Three year old children do not like being in daycare. c. Five-year-old children are favored over three-year-old children at the daycare center. d. Three-year-old children are favored over five-year-old children at the daycare center.
Physics
2 answers:
konstantin123 [22]3 years ago
5 0
This question is not about physics science.

The answer is: option <span>a. Five-year-old children have longer attention spans than three-year-old children.

It is the attention ability what let the older children to stay longer in one location instead of being moving between different activities. The younger children who cannot keep their attention long time in a same activity entertain themselves by changing activities.
</span>
lawyer [7]3 years ago
5 0

Answer: Answer is Option A. Five-year-old children have longer attention spans than three-year-old children.

Explanation:

Just took the quiz

You might be interested in
A constant force of 2.5 N to the right acts on a 4.5 kg mass for 0.90 s.
Alborosie

Answer:

(a) v_f=0.5\frac{m}{s}

(b) v_f=-11\frac{m}{s}

Explanation:

(a) Since a constant external force is applied to the body, it is under an uniformly accelerated motion. Using the following kinematic equation, we calculate the final velocity of the mass  if it is initially at rest(v_0=0):

v_f=v_0+at\\v_f=at(1)

According to Newton's second law:

F=ma\\a=\frac{F}{m}(2)

Replacing (2) in (1):

v_f=\frac{F}{m}t\\v_f=\frac{2.5N}{4.5kg}(0.9s)\\v_f=0.5\frac{m}{s}

(b) In this case we have v_0=-11.5\frac{m}{s}. So, we use the final velocity equation:

v_f=v_0+at\\v_f=v_0+\frac{F}{m}t\\v_f=-11.5\frac{m}{s}+\frac{2.5N}{4.5kg}(0.9s)\\v_f=-11\frac{m}{s}

8 0
3 years ago
if the efficiency of an electric furnace is 96%, then 96% of the input energy is transformed into thermal energy. what is the ot
Nonamiya [84]
It is wasted, most likely as light, in this case, or it is lost during the transport of electricity.
5 0
3 years ago
A concave mirror has a focal length of 13.5 cm. This mirror forms an image located 37.5 cm in front of the mirror. Find the magn
77julia77 [94]

Explanation:

It is given that,

Focal length of the concave mirror, f = -13.5 cm

Image distance, v = -37.5 cm (in front of mirror)

Let u is the object distance. It can be calculated using the mirror's formula as :

\dfrac{1}{v}+\dfrac{1}{u}=\dfrac{1}{f}

\dfrac{1}{u}=\dfrac{1}{f}-\dfrac{1}{v}

\dfrac{1}{u}=\dfrac{1}{(-13.5)}-\dfrac{1}{(-37.5)}

u = -21.09 cm

The magnification of the mirror is given by :

m=\dfrac{-v}{u}

m=\dfrac{-(-37.5)}{(-21.09)}

m = -1.77

So, the magnification produced by the mirror is (-1.77). Hence, this is the required solution.

7 0
3 years ago
HELPP ILL GIVE BRIANLISG
STatiana [176]

Answer:

31. Respiratory System

32. Excretory System

33. Nervous System

34. Reproductive system

35. Skeleton System

Explanation:

Hope it helps you.^_^

6 0
3 years ago
Read 2 more answers
A boat is traveling at an initial velocity of 2.7 meters per second in the positive direction. It accelerates at a rate of 0.15
cupoosta [38]

Answer:

\boxed {\boxed {\sf 4.5 \ m/s \ in \ the  \ positive \ direction}}

Explanation:

We are asked to find the final velocity of the boat.

We are given the initial velocity, acceleration, and time. Therefore, we will use the following kinematic equation.

v_f= v_i + at

The initial velocity is 2.7 meters per second. The acceleration is 0.15 meters per second squared. The time is 12 seconds.

  • v_i= 2.7 m/s
  • a= 0.15 m/s²
  • t= 12 s

Substitute the values into the formula.

v_f = 2.7 \ m/s + (0.15 \ m/s^2)(12 \ s)

Multiply the numbers in parentheses.

v_f= 2.7 \ m/s + (0.15 \ m/s/s * 12 \ s)

v_f = 2.7 \ m/s + (0.15 \ m/s *12)

\v_f=2.7 \ m/s + (1.8 \ m/s)v_f=2.7 \ m/s + (1.8 \ m/s)

Add.

v_f=4.5 \ m/s

The final velocity of the boat is <u>4.5 meters per second in the positive direction.</u>

5 0
3 years ago
Other questions:
  • Radiation can travel through _______ making it different from convection and conduction
    7·1 answer
  • How many weeks are in the regular NFL season?
    10·2 answers
  • A force of 100 newtons is applied to a box at an angle of 36º with the horizontal. If the mass of the box is 25 kilograms, what
    15·1 answer
  • elaborate on the difference between a chemical change and a physical change. a) a physical change is irreversible where as a che
    9·2 answers
  • PLZ HELP do waves transport water with them
    7·1 answer
  • An archer wishes to shoot an arrow at a target at eye level a distance of 50.0m away. If the initial speed imparted to the arrow
    13·1 answer
  • .<br> A .63 kg ball is moving at 4.3m/s. What is the momentum of the ball?
    8·1 answer
  • Larger animals have sturdier bones than smaller animals. A mouse's skeleton is only a few percent of its body weight, compared t
    12·1 answer
  • A rock on earth has a weight of 135 Newtons. What is its mass?
    8·1 answer
  • A 2.00 kg rock is dropped from the top of a 30.0 m high building. Calculate the ball’s momentum at the time that it strikes the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!