Answer:
(a) The horizontal ground reaction force 
(b) The vertical ground reaction force 
(c) The resultant ground reaction force 
Explanation:
Given
John mass , m = 65 kg
Horizontal acceleration , 
Vertical acceleration , 
(a) Using Newton's 2nd law in horizontal direction

=>
Thus the horizontal ground reaction force 
(b) Using Newton's 2nd law in vertical direction

=>
=>
Thus the vertical ground reaction force 
(c) Resultant ground reaction force is

=>
=>
Thus the resultant ground reaction force 
It will decrease
When the temperature increased, the rate will decrease
The magnitude of the electric field at the third vertex of the triangle is determined as zero.
<h3>Electric field at the third vertex of the triangle </h3>
The electric field at the third vertex of the equilateral triangle due to the other charges placed on the first and second vertices is calculated as follows;
E = E(13) + E(23)
E = (kq₁)/r² + (kq₂)/r²
where;
- q1 is positive charge
- q2 is negative charge
E = (kq₁)/r² - (kq₂)/r²
E = 0
Thus, the magnitude of the electric field at the third vertex of the triangle is determined as zero.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
The answer is 12.36. hoped this helped!
Refer to the figure below.
R = resistance.
Case 1:
The voltage source is V₁ and the current is 10 mA. Therefore
V₁ = (10 mA)R
Case 2:
The voltage source is V₂ and the current is 8 mA. Therefore
V₂ = (8 mA)R
Case 3:
The voltage across the resistance is V₁ - V₂. Therefore the current I is given by
V₁ - V₂ = IR
10R - 8R = (I mA)R
2 = I
The current is 2 mA.
Answer: 2 mA