Answer:
length of the ladder is 13.47 feet
base of wall to latter distance 6.10 feet
angle between ladder and the wall is 26.95°
Explanation:
given data
height h = 12 feet
angle 63°
to find out
length of the ladder ( L) and length of wall to ladder ( A) and angle between ladder and the wall
solution
we consider here angle between base of wall and floor is right angle
we apply here trigonometry rule that is
sin63 = h/L
put here value
L = 12 / sin63
L = 13.47
so length of the ladder is 13.47 feet
and
we can say
tan 63 = h / A
put here value
A = 12 / tan63
A = 6.10
so base of wall to latter distance 6.10 feet
and
we say here
tanθ = 6.10 / 12
θ = 26.95°
so angle between ladder and the wall is 26.95°
Answer:
The average drag force is 1.206 (-i) N
Explanation:
You have to apply the equations of<em> Impulse</em>:
I=FmedΔt
Where I and Fmed (the average force) are vectors.
The Impulse can also be expressed as the change in the <em>quantity of motion</em> (vector P)
I=P2-P1
P=mV (m is the mass and v is the velocity)
You can calculate the quantity of motion at the beggining and at the end of the given time:
Replace the mass in kg, dividing the mass by 1000 to convert it from g to kg.
P1=(0.179kg)(30.252m/s) i= 5.414 i kg.m/s
P2=0.179kg)(28.452m/s) i = 5.092 i kg. m/s
Where i is the unit vector in the x-direction.
Therefore:
I= 5.092 i - 5.414 i = -0.322 i
The average drag force is:
Fmed= I/Δt = -0.322 i/ 0.267s = -1.206 i N
Answer: velocity = 50m/s
Distance moved=5m
Explanation:
Using the formula Ft=Mv i.e impulse= momentum
Where F= force ,t= time, M= mass, v = velocity
In this case we need to find v,
F,t,M are all given in the question.
Therefore, substituting the values we have
250N×0.1s=0.5kg×v. Mass=500g= 0.5kg
v=25/0.5= 50m/s
The distance the puck will move when it is on his stick.
D= Velocity × time
D=50m/s × 0.1s
D=5m
Goodluck...
Answer:
The pencil is not pulled towards a person due to a very small magnitude of force between them, due to lighter masses.
Explanation:
Let us apply Newton's Law of Gravitation between a person and pencil.
Average Mass of a Normal Pencil = m₁ = 10 g = 0.01 kg
Average Mass of a Person = m₂ = 80 kg
Distance between both = r = 1 cm = 0.01 m (Taking minimal distance)
Gravitational Constant = G = 6.67 x 10⁻¹¹ N.m²/kg²
So,
F = Gm₁m₂/r²
F = (6.67 x 10⁻¹¹ N.m²/kg²)(0.01 kg)(80 kg)/(0.01 m)²
<u>F = 5.34 x 10⁻⁷ N</u>
This Force is very small in magnitude due to the light masses of both objects.
<u>Therefore, the pencil is not pulled towards a person due to a very small magnitude of force between them, due to lighter masses.</u>