Answer: The question has some missing details. The initial velocity given as u = -6.5i + 17j + 13k and the final velocity v = -2.8i + 17j -9.3k.
a) = (1.82i - 9.69k)m/s2
b) magnitude = 9.85m/s2
c) direction = 280.64 degree
Explanation:
The detailed and step is shown in the attachment.
It would be option C. It rotates, or spins, on its axis, but it revolves around the sun.
Answer:
The answer is below
Explanation:
Let vₐ be the speed of airplane = 135 mph, vₙ be the speed of the wind = 70 mph and vₐₙ be the speed of the airplane relative to the wind.
The distance (d) = 135 miles, Δt = 1 hour, vₐₙ = 135 miles / 1 hour = 135 mph
vₐ = vₙ + vₐₙ
vₐ = vₐₙ
Therefore, vₐ, vₐₙ, vₙ can be represented by an isosceles triangle since vₐ = vₐₙ.
The direction of the wind θ is:
sin(θ / 2) = vₙ / 2vₐ
sin(θ / 2) = 70/ (2*135)
sin(θ / 2) = 0.2593
θ / 2 = sin⁻¹(0.2593) = 15
θ = 30⁰
2α = 180° - 30°
2α = 150°
α = 75°
a) The direction of the wind is 75° in the south east direction while the airplane is heading 30° in the north east direction.
Answer:

Explanation:
At some distance from the Earth the force of attraction due to moon is balanced by the force due to Moon
so we will have

now we have


so we will have

Now by energy conservation



When you set a heavy bag down on the ground, you are doing negative work on it.