Answer:

Explanation:

Round to three significant digits

Answer:
(b) EAST
Explanation:
you can assume that the magnetic field points rightward, that is, in the positive x direction (NORTH). Furthermore, you can assume that the direction of the motion of the electron is in the positive y direction. Hence, you have:

You use the Lorentz formula to known which is the direction of the magnetic force over the electron:

which implies the cross product between the unitary vecors j and i, that is
(WEST)
However, the minus sign of the charge of the electron changes the direction 180°. Hence, the direction is k. That is, to the EAST
Answer:
induced EMF = 240 V
and by the lenz's law direction of induced EMF is opposite to the applied EMF
Explanation:
given data
inductance = 8 mH
resistance = 5 Ω
current = 4.0 A
time t = 0
current grow = 4.0 A to 10.0 A
to find out
value and the direction of the induced EMF
solution
we get here induced EMF of induction is express as
E = - L
...................1
so E = - L 
put here value we get
E = - 8 ×

E = -40 × 6
E = -240
take magnitude
induced EMF = 240 V
and by the lenz's law we get direction of induced EMF is opposite to the applied EMF
Answer:
5.959 m/s
Explanation:
m = Mass of gymnast
u = Initial velocity
v = Final velocity
= Initial height
= Final height
From conservation of Energy



Velocity of gymnast at bottom of swing is 5.959 m/s