Answer:
E = k Q / [d(d+L)]
Explanation:
As the charge distribution is continuous we must use integrals to solve the problem, using the equation of the elective field
E = k ∫ dq/ r² r^
"k" is the Coulomb constant 8.9875 10 9 N / m2 C2, "r" is the distance from the load to the calculation point, "dq" is the charge element and "r^" is a unit ventor from the load element to the point.
Suppose the rod is along the x-axis, let's look for the charge density per unit length, which is constant
λ = Q / L
If we derive from the length we have
λ = dq/dx ⇒ dq = L dx
We have the variation of the cgarge per unit length, now let's calculate the magnitude of the electric field produced by this small segment of charge
dE = k dq / x²2
dE = k λ dx / x²
Let us write the integral limits, the lower is the distance from the point to the nearest end of the rod "d" and the upper is this value plus the length of the rod "del" since with these limits we have all the chosen charge consider
E = k 
We take out the constant magnitudes and perform the integral
E = k λ (-1/x)
Evaluating
E = k λ [ 1/d - 1/ (d+L)]
Using λ = Q/L
E = k Q/L [ 1/d - 1/ (d+L)]
let's use a bit of arithmetic to simplify the expression
[ 1/d - 1/ (d+L)] = L /[d(d+L)]
The final result is
E = k Q / [d(d+L)]
Answer: 1: (A) They allow electrons to move freely between them. 2: (C) they change their positions relative to one another.
Explanation:
Weather balloons are filled with only a small amount of helium because the __Volume__. of the balloon will increase as the air pressure decreases at higher altitudes.
Answer:
the girl must sit 2 cm from the pivot at the opposite end of the seesaw.
Explanation:
Given;
length of the seesaw, L = 4.0 m
weight of the boy, W₁ = 400 N
position of the boy from the pivot, d₁ = 1.5 m
weight of her sister, W₂ = 300 N
First, make a sketch of this information given;
0---0.5m---------------------Δ--------------------------4m
↓<--------1.5m-------> <---------x--------->↓
400 N 300N
Apply the principle of moment about the pivot, to determine the value of x;
Sum of anticlockwise moment = sum of clockwise moment
400(1.5) = 300(x)
600 = 300x
x = 600/300
x = 2 cm
Thus, the girl must sit 2 cm from the pivot at the opposite end of the seesaw.