Answer:
Mass as a Measure of the Amount of Inertia
All objects resist changes in their state of motion. All objects have this tendency - they have inertia.
Explanation:
hope this helps
First,

where
is density,
is mass, and
is volume. We can compute the volume of the roll:


When the roll is unfurled, the aluminum will be a rectangular box (a very thin one), so its volume will be the product of the given area and its thickness
. Note that we're assuming the given area is not the actual total surface area of the aluminum box, but just the area of the largest face (i.e. the area of one side of the unrolled sheet of aluminum).
So we have

where
is the given area, so


If we're taking significant digits into account, the volume we found would have been
, in turn making the thickness
.
I think the correct answer would be horizontal exchanges or market. It is a type of market wherein a service or a product would meet a need of a very wide range of consumers from different sectors. Hope this answers the question. Have a nice day.
Force, pressure, and charge are all what are called <em>derived units</em>. They come from algebraic combinations of <em>base units</em>, measures of things like length, time, temperature, mass, and current. <em>Speed, </em>for instance, is a derived unit, since it's a combination of length and time in the form [speed] = [length] / [time] (miles per hour, meters per second, etc.)
Force is defined with Newton's equation F = ma, where m is an object's mass and a is its acceleration. It's unit is kg·m/s², which scientists have called a <em>Newton</em>. (Example: They used <em>9 Newtons</em> of force)
Pressure is force applied over an area, defined by the equation P = F/A. We can derive its from Newtons to get a unit of N/m², a unit scientists call the <em>Pascal</em>. (Example: Applying <em>100 Pascals </em>of pressure)
Finally, charge is given by the equation Q = It, where I is the current flowing through an object and t is how long that current flows through. It has a unit of A·s (ampere-seconds), but scientist call this unit a Coulomb. (Example: 20 <em>Coulombs</em> of charge)