What are the different ways that the simulation shows you that the equation is balanced, visually? For each balanced reaction, i
ndicate the total number of molecules (the big coefficients) in the table. Reaction Total Number of Molecules Reactant Side (left) Product Side (right) Make Ammonia Separate Water Combust Methane Is the number of total molecules on the left side of a balanced equation always equal to the number of total molecules on the right side of the equation? Explain your answer. For each balanced reaction, indicate the total number of atoms (the individual atoms) in the table. Hint: This may requiring multiplying subscript numbers by coefficients for some atoms. Example: 2NH3–There are 2 N atoms, and 6 H atoms (2 x 3). Reaction Total Number of Atoms Reactant Side (left) Product Side (right) Make Ammonia Separate Water Combust Methane Is the number of total atoms on the left side of a balanced equation always equal to the number of total atoms on the right side of the equation? What strategies did you use when you played the balancing chemical equations game? Which atoms were the easiest to start examining to try to balance the equations? Did it require trial and error? In the simulation, were you able to use non-integer numbers (like ½ or 0.43) for the coefficients in a balanced equation?
1 answer:
You might be interested in
Answer:
mechanical energy to heat energy to chemical energy
It looks that way cause the earth is rotation on its axis
Visceral epithelial cells
Answer:
It is very important because scientists, especially the ones with empirical experiments and results, are prone to error and the empirical data is in need to be under strict observation done not only by many scientists but also by expermiented ones. This guards everybody to change the parameters suddenly which can affect the real results of an experiment
Explanation:
Answer:
Sorry cant find the answer but i hope you got it right and if you didn't you'll still do great. :)
Explanation: