Answer:
v = 26.7 mph
Explanation:
During the first 5 hours, at a constant speed of 20 mph, we find the total displacement to be as follows:
Δx₁ = v₁*t₁ = 20 mph*5 h = 100 mi
Assuming we can neglect the displacement during the speeding up from 20 to 60 mph, we can find the the total displacement at 60 mph as follows:
Δx₂ = v₂*t₂ = 60 mph*1 h = 60 mi
So, the total displacement during all the trip wil be:
Δx = Δx₁ + Δx₂ = 100 mi + 60 mi = 160 mi
So we can find the the average velocity during the 6-hour period, applying the definition of average velocity, as follows:
v = Δx / Δt = 160 mi / 6 h = 26.7 mph
B. evaporation
c. condensation
They are opposite processes that involve the same transfer of energy
the Orbital Velocity is the velocity sufficient to cause a natural or artificial satellite to remain in orbit. Inertia of the moving body tends to make it move on in a straight line, while gravitational force tends to pull it down. The orbital path, elliptical or circular, representing a balance between gravity and inertia, and it follows a rue that states that the more massive the body at the centre of attraction is, the higher is the orbital velocity for a particular altitude or distance.
2/5 = .4
.4*100= 40%
Alex spends more time