Answer:
all of those are pisitions
Explanation:
Answer:
Use a faster than normal approach and landing speed.
Explanation
For pilots, it is one of the critical moments of the flight that concentrates 12% of fatal accidents. The main difficulty lies in reaching enough speed to take flight within the space of the runway. At present, it ceased to be a challenge for the aircraft, since the engine power improved, so the takeoff ceased to be the most dangerous moment of the flight.
One of the risks that aircraft face today is that some of the engines fail while the plane accelerates. In that case, the pilot must decide in an instant whether it is better to take flight and solve the problem in the air or if it is preferable not to take off.
Although for many staying on the ground might seem the most sensible option, it is not as simple as it seems: to suddenly decelerate an aircraft, with the weight it has and the speed it reaches can cause accidents. However, today a special cement was designed that runs around the runways of the airports, which when coming into contact with the wheels of the aircraft the ground breaks and helps to slow down.
Answer:
see explanation
Explanation:
There is an increasing demand for materials and natural resources from a growing global population, especially those in more economically developed countries. The world's resources are being used up more quickly. The consumption of resources is spread unequally between MEDCs (more economically developed countries), who use more resources, and LEDCs (less economically developed countries), who use less.
The gap between the rich and poor is more evident when the resources are shared so unevenly and unfairly and natural resources like materials and natural energy cannot reach the demand of the people which can have consequences and be very difficult to manage. Having a lack of these materials in a country can result in prices going up for them, and the industry could be harder to work in because of a lack of materials.
The total amount of energy remains constant in an isolated system. It implies that energy can neither be created nor destroyed, but can be change from one form to another.
Answer:
1. 75N
2. 67,983 J (=67.98 kJ)
Explanation:
1. Work = Force x Distance
we are given that Work = 1,500J and Distance = 20m
hence,
Work = Force x Distance
1,500 = Force x 20
Force = 1,500 ÷ 20 = 75N
2. Potential Energy, PE = mass x gravity x change in height
we are given that mass = 165 kg and change in height = 42m
assuming that gravity, g = 9.81 m/s²
Potential Energy, PE = mass x gravity x change in height
Potential Energy, PE = 165 x 9.81 x 42 = 67,983 J (=67.98 kJ)