Hipparcos estimated its distance at roughly 96 parsecs from Earth, or 310 ± 20 light years away.
The period of a simple pendulum is given by:

where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:

(1)
We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.
We know it makes N=441 oscillations in t=1090 s, therefore its frequency is

And its period is the reciprocal of its frequency:

So now we can use eq.(1) to find the gravitational acceleration of the planet:
Because the specific metals aren’t mentioned in this inquiry.
The educational guesses that we can propose is that:
<span><span>1. </span>The
hypothetical inquiry: There are existing metals for making pots that will cook
food much faster.</span>
<span><span>2. </span>The
one-tailed alternative hypothesis: There are other metals for making pots that
will cook food much faster than the other metals.</span>
<span><span>
3. </span>The
one-tailed null hypothesis: All metals that are used in making pots will cook
food at an equal rate.</span>
Answer:
Jesseca wanted to create a material that reflected most of the light that fell on it.
Explanation:
Plato Answer
Answer:
Mechanical waves need matter to transfer energy while electromagnetic waves do not. ... Waves change direction when they move from one material into another (matter) through the process of refraction. The wave will change direction when the speed of the wave changes.