The answer is 2.3 hope this helps texted me and tell me if it’s right
Answer:
Solids
:A solid has a definite shape and volume because the molecules that make up the solid are packed closely together and move slowly. Solids are often crystalline; examples of crystalline solids include table salt, sugar, diamonds, and many other minerals. Solids are sometimes formed when liquids or gases are cooled; ice is an example of a cooled liquid which has become solid. Other examples of solids include wood, metal, and rock at room temperature. Liquids
: A liquid has a definite volume but takes the shape of its container. Examples of liquids include water and oil. Gases may liquefy when they cool, as is the case with water vapor. This occurs as the molecules in the gas slow down and lose energy. Solids may liquefy when they heat up; molten lava is an example of solid rock which has liquefied as a result of intense heat. Gases
: A gas has neither a definite volume nor a definite shape. Some gases can be seen and felt, while others are intangible for human beings. Examples of gases are air, oxygen, and helium. Earth's atmosphere is made up of gases including nitrogen, oxygen, and carbon dioxide. Plasma: Plasma has neither a definite volume nor a definite shape. Plasma often is seen in ionized gases, but it is distinct from a gas because it possesses unique properties. Free electrical charges (not bound to atoms or ions) cause the plasma to be electrically conductive. The plasma may be formed by heating and ionizing a gas. Examples of plasma include stars, lightning, fluorescent lights, and neon signs.
Explanation:
Answer:
B)
Explanation:
That the time period of which they stop.
Answer:
Option (e) = The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere.
Explanation:
So, we are given the following set of infomation in the question given above;
=> "spherical Gaussian surface of radius R centered at the origin."
=> " A charge Q is placed inside the sphere."
So, the question is that if we are to maximize the magnitude of the flux of the electric field through the Gaussian surface, the charge should be located where?
The CORRECT option (e) that is " The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere." Is correct because of the reason given below;
REASON: because the charge is "covered" and the position is unknown, the flux will continue to be constant.
Also, the Equation that defines Gauss' law does not specify the position that the charge needs to be located, therefore it can be anywhere.