Answer:
0.0366 m
Explanation:
We are given;
Current density; J = 540 A/cm² = 540 × 10⁴ m
Current; I = 0.57 A
Now, formula for current density is;
J = I/A
Where A is area = πr²
Thus;
J = I/(πr²)
r = √(I/(Jπ))
r = √(0.57/(540π))
r = 0.0183 m
Diameter = 2 × radius
Diameter = 2 × 0.0183
Diameter = 0.0366 m
Its letter C. 5N to the left. Since Jeremy's force in Newtons are higher than Amanda's (in newtons), and since Jeremy's force directs to the left, then the direction of the force will be to the LEFT. Then subtract the higher one to the lower one so that would be: 10N-5N=5N. So it is C. 5N to the left.
The membrane is depolarized compared to the resting membrane potential.
Through conformational changes from closed, nonconducting states to an open, current-conducting state, membrane depolarization activates sodium channels. Na+ channels open slowly and change from an open state to a nonconducting, rapidly inactivated state as a result of delayed openings, which contribute to the declining fraction of INa induced by prolonged depolarization. Additionally, sodium channels can move swiftly from the closed state to the fast-inactivated state. When the membrane is depolarized, inactivated channels are prevented from opening.
The distribution of channels between the closed and slow-inactivated states, however, limits the number of excitable sodium channels as a function of the membrane potential since slow inactivation acts at greater negative potentials than fast inactivation.
To learn more about membrane potential please visit-
brainly.com/question/8438145
#SPJ1