Answer:let initial velocity u=14m/s
Final velocity v=20m/s
Time taken t=30
Acceleration =a
V=u +at
a= (20-14)/30
a=0.2m/s^2
Explanation:
Acceleration is the change in velocity with respect to time.
Answer:
* Larger mirrors collect more light and therefore fainter and more distant objects can have enough intensity to be detected
* arger mirrors decreases the angle of dispersion giving a better resolution of the bodies
Explanation:
Refracting telescopes get bigger every day for two main reasons.
* Larger mirrors collect more light and therefore fainter and more distant objects can have enough intensity to be detected
* the diffraction process for circular apertures is given by
θ = 1.22 λ / D
where d is the diameter of the mirror, therefore having larger mirrors decreases the angle of dispersion giving a better resolution of the bodies
I think you forgot to give the options along with your question. I am answering the question based on my knowledge and research. <span>A business that sells products to teens would most likely create a website with a title ending in .com. I hope that this is the answer that has actually come to your great help.</span>
When do you gotta turn it in?
Answer:
0.125 m
Explanation:
In this problem, we have:
v = 0.50 m/s is the average velocity of the wave
T = 0.25 s is the period of the wave
We can find the frequency of the wave, which is equal to the reciprocal of the period:

The problem is asking us to find the distance between two crests of the wave: this is equivalent to the wavelength. The wavelength is related to the average velocity and the frequency by the formula:

Substituting the numerical values, we find
