First convert grams to kilograms (so that the answer will be N) 1000g=1kg so 2.9g=.0029kg.
To solve for force we use the equation F=ma, so we need to find acceleration (a) .Next use the equation a=Δv/Δt. Δt is given as being .00043 seconds. Δv is the difference in velocities - final minus initial (this is important to discern the direction of the force vector); 0-304=-304. Now plugin and solve for a. The result is -706976.7442 m/s², or -710000 m/s² if you are using significant figures.
Now use the values for mass and acceleration to solve for force. F=ma=-2050.232558N or F=- 2100N (if you are using significant figures).
Answer:
2r
Explanation:
As we know that
The displacement is the total distance measured between the initial or start and final or destination point
If particle cover half path of the circle, the displacement can easily find out by considering the distance between the start and destination point
We attached the diagram for better understanding
As per the diagram.
The displacement after half-circle is
AB = OA + OB
= r + r
= 2r
Answer:
a) 
b) 
Explanation:
Given:
- speed of rocket initially,

- top speed of rocket after acceleration,

- time taken to get to the top speed,

- final speed of the rocket,

- time taken to get to the final speed after reaching the top speed,

Now the acceleration:



Now as a fraction of gravity:


Now, the deceleration:


Now as a fraction of gravity:


Answer:
Seismic waves cause Earthquakes by shaking the ground aggressively and dangerously. These waves are usually calculated on a seismograph to calculate how hard the earthquake hit that area. A transform Boundary creates the tension when the tectonic plates gets stuck. It stays stuck for a long period of time. Then, at one point, the tectonic plates become unstuck which releases the tension into waves which are called seismic waves. Hope I answered you question.
No. A neutron star is the weird remains of a star that blew its outer layers off
in a nova event, and then had enough mass left so that gravity crushed its
electrons into its protons, and then what was left of it shrank down to a sphere
of unimaginably dense neutron soup. But it didn't have enough mass to go
any farther than that.
A black hole is the remains of a star that had enough mass to go even farther
than that. No force in the universe was able to stop it from contracting, so it
kept contracting until its mass occupied no volume ... zero. It became even
more weird, and is composed of a substance that we don't know anything about
and can't describe, and occupies zero volume.
Contrary to popular fairy tales, a black hole doesn't reach out and "suck things in".
It's just so small (zero) that things can get very close to it. You know that gravity
gets stronger as you get closer to an object, so if the object has no size at all, you
can get really really close to it, and THAT's where the gravity gets really strong.
You may weigh, let's say, 100 pounds on the Earth. But you're like 4,000 miles
from the center of the Earth. What if all of the earth's mass was crammed into
the size of a bean. Then you could get 1 inch from it, and at that distance from
the mass of the Earth, you would weigh 25,344,000,000 pounds.
But Earth's mass is not enough to make a black hole. That takes a minimum
of about 3 times the mass of the sun, which is right about 1 million times the
Earth's mass. THEN you can get a lightweight black hole.
Do you see how it works now ?
I know. It all seems too fantastic to be true.
It sure does.