The total resistance of a series circuit is equal to the sum of individual resistances. Voltage applied to a series circuit is equal to the sum of the individual voltage drops. The voltage drop across a resistor in a series circuit is directly proportional to the size of the resistor.
If you know the total current and the voltage across the whole circuit, you can find the total resistance using Ohm's Law: R = V / I. For example, a parallel circuit has a voltage of 9 volts and total current of 3 amps. The total resistance RT = 9 volts / 3 amps = 3 Ω
Current: The total circuit current is equal to the sum of the individual branch currents. Resistance: Individual resistances diminish to equal a smaller total resistance rather than add to make the total.
Light travels in waves AND in bundles called "photons".
It's hard to imagine something that's a wave and also a bundle.
But it turns out that light behaves like both waves and bundles.
If you design an experiment to detect waves, then it responds to light.
And if you design an experiment to detect 'bundles' or particles, then
that one also responds to light.
Answer:
E = 0.437 N/C
Explanation:
Given that,
Charge, 
Electric force, 
Let the strength of the electric field is E. We know that, the electric force is given by :
F = qE
Where
E is the electric field strength

So, the strength of the electric field is equal to 0.437 N/C.
Answer:
5.634 N rightwards
Explanation:
qo = - 3 x 10^-7 C
q1 = - 9 x 10^-6 C
q2 = 10 x 10^-6 C
r1 = 7 cm = 0.07 m
r2 = 20 cm = 0.2 m
The force on test charge due to q1 is F1 which is acting towards right
According to the Coulomb's law

F1 = (9 x 10^9 x 9 x 10^-6 x 3 x 10^-7) / (0.07 x 0.07)
F1 = 4.959 N rightwards
The force on test charge due to q2 is F1 which is acting towards right
According to the Coulomb's law

F2 = (9 x 10^9 x 10 x 10^-6 x 3 x 10^-7) / (0.2 x 0.2)
F2 = 0.675 N rightwards
Net force on the test charge
F = F1 + F2 = 4.959 + 0.675 = 5.634 N rightwards