1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marysya [2.9K]
3 years ago
14

An interference pattern is produced by light with a wavelength 550 nm from a distant source incident on two identical parallel s

lits separated by a distance (between centers) of 0.500 mm .
a. If the slits are very narrow, what would be the angular position of the second- order, two-slit interference maxima?
b. Let the slits have a width 0.300 mm. In terms of the intensity lo at the center of the central maximum, what is the intensity at the angular position in part "a"?
Physics
1 answer:
ad-work [718]3 years ago
3 0

Answer:

a

 \theta  =  0.0022 rad

b

 I  =  0.000304 I_o

Explanation:

From the question we are told that  

   The  wavelength of the light is \lambda  = 550 \ nm  =  550 *10^{-9} \ m

    The  distance of the slit separation is  d = 0.500 \ mm = 5.0 *10^{-4} \ m

 

Generally the condition for two slit interference  is  

     dsin \theta =  m \lambda

Where m is the order which is given from the question as  m = 2

=>    \theta  =  sin ^{-1} [\frac{m \lambda}{d} ]

 substituting values  

      \theta  =  0.0022 rad

Now on the second question  

   The distance of separation of the slit is  

       d =  0.300 \ mm  =  3.0 *10^{-4} \ m

The  intensity at the  the angular position in part "a" is mathematically evaluated as

      I  =  I_o  [\frac{sin \beta}{\beta} ]^2

Where  \beta is mathematically evaluated as

       \beta  =  \frac{\pi *  d  *  sin(\theta )}{\lambda }

  substituting values

     \beta  =  \frac{3.142  *  3*10^{-4}  *  sin(0.0022 )}{550 *10^{-9} }

    \beta  = 0.06581

So the intensity is  

    I  =  I_o  [\frac{sin (0.06581)}{0.06581} ]^2

   I  =  0.000304 I_o

You might be interested in
15 points! An atomic nucleus initially moving at 420 m/s emits an alpha particle in the direction of its velocity, and the remai
alexandr1967 [171]

The alpha particle is emitted at 4235 m/s

Explanation:

We can use the law of conservation of momentum to solve the problem: the total momentum of the original nucleus must be equal to the total momentum after the alpha particle has been emitted. Therefore:

p_i = p_f\\ Mu=m_1 v_1 + m_2 v_2 =  

where:  

M =222u is the mass of the original nucleus

v=420 m/s is the initial velocity of the nucleus

m_1 = 4 u is the mass of the alpha particle

v_1 is the final velocity of the alpha particle

m_2 = 222u-4u = 218 u is the mass of the daughter nucleus

v_2 = 350 m/s is the final velocity of the nucleus

Solving for v_1, we  find the final velocity of the alpha particle:

v_1 = \frac{Mu-m_2 v_2}{m_1}=\frac{(222)(420)-(218)(350)}{4}=4235 m/s

Learn more about momentum:

brainly.com/question/7973509

brainly.com/question/6573742

brainly.com/question/2370982

brainly.com/question/9484203

#LearnwithBrainly

4 0
3 years ago
Which of the following is the best example of a primary circular reaction?
olga55 [171]

Primary Circular Reactions (1-4 months): This substage involves coordinating sensation and new schemas. For example, a child may suck his or her thumb by accident and then later intentionally repeat the action. These actions are repeated because the infant finds them pleasurable.

4 0
3 years ago
The fact that your eyes rotate in their sockets, either getting closer or farther from each other, as an object changes its dist
marta [7]

Answer:

convergence

Explanation:

5 0
3 years ago
RHOOLIOTTO<br> How much mass would be needed to produce 2.7 x 1016 J?
Radda [10]
E = mc^2
m = e/c^2
m = 2.7*10^16/(300000^2)
m = 300000
8 0
3 years ago
Un neumático sin cámara, soporta una presión de 1.5 atm cuando la temperatura ambiente es de 300°K. ¿Qué presión llegará a sopor
arlik [135]

Answer:

El neumático soportará una presión de 1.7 atm.

Explanation:

Podemos encontrar la presión final del neumático usando la ecuación del gas ideal:

PV = nRT

En donde:

P: es la presión

V: es el volumen

n: es el número de moles del gas

R: es la constante de gases ideales

T: es la temperatura

Cuando el neumático soporta la presión inicial tenemos:

P₁ = 1.5 atm

T₁ = 300 K

V_{1} = \frac{nRT_{1}}{P_{1}}  (1)  

La presión cuando T = 67 °C es:

P_{2} = \frac{nRT_{2}}{V_{2}}   (2)

Dado que V₁ = V₂  (el volumen del neumático no cambia), al introducir la ecuación (1) en la ecuación (2) podemos encontrar la presión final:

P_{2} = \frac{nRT_{2}}{V_{2}} = \frac{nRT_{2}}{\frac{nRT_{1}}{P_{1}}} = \frac{P_{1}T_{2}}{T_{1}} = \frac{1.5 atm*(67 + 273)K}{300 K} = 1.7 atm  

Por lo tanto, si en el transcurso de un viaje las ruedas alcanzan una temperatura de 67 ºC, el neumático soportará una presión de 1.7 atm.

Espero que te sea de utilidad!

4 0
3 years ago
Other questions:
  • The driver of a car travels at 90 km / h, observes some children playing on the road 50 m away, and applies the brakes, managing
    8·1 answer
  • A recipe for a sweet tea calls for 3 cups of sugar when you place a sugar into the tea it doesn't dissolve. How could you use di
    7·2 answers
  • A light year is defined as the distance that light can travel in 1 year. What is the value of 1 light year in meter? Show your c
    10·1 answer
  • A 3047.8 kg truck has lost its brakes coming down a mountain. Fortunately, there is a ramp of thick gravel inclined at 9.5 degre
    6·1 answer
  • 50 POINTS PLSS
    14·1 answer
  • A mixed cost contains Select one:
    8·1 answer
  • Consider an electron confined in a region of nuclear dimensions (about 5 fm). Find its minimumpossible kinetic energy in MeV. Tr
    13·1 answer
  • What words from the vocabulary that is on the bottom left corner go in number 4-8?
    6·1 answer
  • If you touch the two probes together while the DMM is set to resistance, what will happen?
    14·1 answer
  • PLS HELP THIS IS WORTH 180 PTS!!(PLUS I WILL MARK BRAINIEST IF SOMEONE ANSWERS CORRECTY FIRST)
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!