Answer: Just apply the formula
Step-by-step explanation:
The equation for volume of a cone is:

The radius is the line that creates a 90 degree angle with the height
The height goes from the base to the tip of the cone.
I recommend leaving Pi as it is and plugging the rest of the numbers first.
Then at the end multiply by 3.14 and round at the end.
This way, it is easier to avoid calculation errors.
<span> I am assuming you want to prove:
csc(x)/[1 - cos(x)] = [1 + cos(x)]/sin^3(x).
</span>
<span>If we multiply the LHS by [1 + cos(x)]/[1 + cos(x)], we get:
LHS = csc(x)/[1 - cos(x)]
= {csc(x)[1 + cos(x)]/{[1 + cos(x)][1 - cos(x)]}
= {csc(x)[1 + cos(x)]}/[1 - cos^2(x)], via difference of squares
= {csc(x)[1 + cos(x)]}/sin^2(x), since sin^2(x) = 1 - cos^2(x).
</span>
<span>Then, since csc(x) = 1/sin(x):
LHS = {csc(x)[1 + cos(x)]}/sin^2(x)
= {[1 + cos(x)]/sin(x)}/sin^2(x)
= [1 + cos(x)]/sin^3(x)
= RHS.
</span>
<span>I hope this helps! </span>
7.030124314 they all just have to be less then 5
Answer:
Step-by-step explanation: