1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maria [59]
2 years ago
6

Hector used the quadratic formula to solve the polynomial equation

Mathematics
2 answers:
Komok [63]2 years ago
7 0

Answer:

8

Step-by-step explanation:

ax² + bx + c = 0

In the quadratic formula the "b" coefficent gets sqaured

bx = 8x

b = 8

Virty [35]2 years ago
5 0

Answer:

STEP

1

:

Equation at the end of step 1

 (32x2 -  8x) -  2  = 0

STEP

2

:

Trying to factor by splitting the middle term

2.1     Factoring  9x2-8x-2

The first term is,  9x2  its coefficient is  9 .

The middle term is,  -8x  its coefficient is  -8 .

The last term, "the constant", is  -2

Step-1 : Multiply the coefficient of the first term by the constant   9 • -2 = -18

Step-2 : Find two factors of  -18  whose sum equals the coefficient of the middle term, which is   -8 .

     -18    +    1    =    -17

     -9    +    2    =    -7

     -6    +    3    =    -3

     -3    +    6    =    3

     -2    +    9    =    7

     -1    +    18    =    17

Observation : No two such factors can be found !!

Conclusion : Trinomial can not be factored

Equation at the end of step

2

:

 9x2 - 8x - 2  = 0

STEP

3

:

Parabola, Finding the Vertex:

3.1      Find the Vertex of   y = 9x2-8x-2

Parabolas have a highest or a lowest point called the Vertex .   Our parabola opens up and accordingly has a lowest point (AKA absolute minimum) .   We know this even before plotting  "y"  because the coefficient of the first term, 9 , is positive (greater than zero).

Each parabola has a vertical line of symmetry that passes through its vertex. Because of this symmetry, the line of symmetry would, for example, pass through the midpoint of the two  x -intercepts (roots or solutions) of the parabola. That is, if the parabola has indeed two real solutions.

Parabolas can model many real life situations, such as the height above ground, of an object thrown upward, after some period of time. The vertex of the parabola can provide us with information, such as the maximum height that object, thrown upwards, can reach. For this reason we want to be able to find the coordinates of the vertex.

For any parabola,Ax2+Bx+C,the  x -coordinate of the vertex is given by  -B/(2A) . In our case the  x  coordinate is   0.4444  

Plugging into the parabola formula   0.4444  for  x  we can calculate the  y -coordinate :

 y = 9.0 * 0.44 * 0.44 - 8.0 * 0.44 - 2.0

or   y = -3.778

Parabola, Graphing Vertex and X-Intercepts :

Root plot for :  y = 9x2-8x-2

Axis of Symmetry (dashed)  {x}={ 0.44}

Vertex at  {x,y} = { 0.44,-3.78}

x -Intercepts (Roots) :

Root 1 at  {x,y} = {-0.20, 0.00}

Root 2 at  {x,y} = { 1.09, 0.00}

Solve Quadratic Equation by Completing The Square

3.2     Solving   9x2-8x-2 = 0 by Completing The Square .

Divide both sides of the equation by  9  to have 1 as the coefficient of the first term :

  x2-(8/9)x-(2/9) = 0

Add  2/9  to both side of the equation :

  x2-(8/9)x = 2/9

Now the clever bit: Take the coefficient of  x , which is  8/9 , divide by two, giving  4/9 , and finally square it giving  16/81

Add  16/81  to both sides of the equation :

 On the right hand side we have :

  2/9  +  16/81   The common denominator of the two fractions is  81   Adding  (18/81)+(16/81)  gives  34/81

 So adding to both sides we finally get :

  x2-(8/9)x+(16/81) = 34/81

Adding  16/81  has completed the left hand side into a perfect square :

  x2-(8/9)x+(16/81)  =

  (x-(4/9)) • (x-(4/9))  =

 (x-(4/9))2

Things which are equal to the same thing are also equal to one another. Since

  x2-(8/9)x+(16/81) = 34/81 and

  x2-(8/9)x+(16/81) = (x-(4/9))2

then, according to the law of transitivity,

  (x-(4/9))2 = 34/81

We'll refer to this Equation as  Eq. #3.2.1  

The Square Root Principle says that When two things are equal, their square roots are equal.

Note that the square root of

  (x-(4/9))2   is

  (x-(4/9))2/2 =

 (x-(4/9))1 =

  x-(4/9)

Now, applying the Square Root Principle to  Eq. #3.2.1  we get:

  x-(4/9) = √ 34/81

Add  4/9  to both sides to obtain:

  x = 4/9 + √ 34/81

Since a square root has two values, one positive and the other negative

  x2 - (8/9)x - (2/9) = 0

  has two solutions:

 x = 4/9 + √ 34/81

  or

 x = 4/9 - √ 34/81

Note that  √ 34/81 can be written as

 √ 34  / √ 81   which is √ 34  / 9

Solve Quadratic Equation using the Quadratic Formula

3.3     Solving    9x2-8x-2 = 0 by the Quadratic Formula .

According to the Quadratic Formula,  x  , the solution for   Ax2+Bx+C  = 0  , where  A, B  and  C  are numbers, often called coefficients, is given by :

                                   

           - B  ±  √ B2-4AC

 x =   ————————

                     2A

 In our case,  A   =     9

                     B   =    -8

                     C   =   -2

Accordingly,  B2  -  4AC   =

                    64 - (-72) =

                    136

Applying the quadratic formula :

              8 ± √ 136

  x  =    —————

                   18

Can  √ 136 be simplified ?

Yes!   The prime factorization of  136   is

  2•2•2•17

To be able to remove something from under the radical, there have to be  2  instances of it (because we are taking a square i.e. second root).

√ 136   =  √ 2•2•2•17   =

               ±  2 • √ 34

 √ 34   , rounded to 4 decimal digits, is   5.8310

So now we are looking at:

          x  =  ( 8 ± 2 •  5.831 ) / 18

Two real solutions:

x =(8+√136)/18=(4+√ 34 )/9= 1.092

or:

x =(8-√136)/18=(4-√ 34 )/9= -0.203

Two solutions were found :

x =(8-√136)/18=(4-√ 34 )/9= -0.203

x =(8+√136)/18=(4+√ 34 )/9= 1.092

Step-by-step explanation:

You might be interested in
Edge Precalculus End Behavior of Limits
morpeh [17]

Answer:

ereee

Step-by-step explanation:

7 0
3 years ago
we want to build a box with square base of side x and height and in such a way that the volume is 128 cubic inches. If we know t
sergij07 [2.7K]

Answer:

4 in × 4 in × 8 in or  

6.47 in × 6.47 in × 3.06 in

Step-by-step explanation:

Data:

(1)                  V = 128 in³

(2)                  l = w = x

(3) 4(l + w + h) = 64 in  (There are 12 edges)

Calculation:

The formula for the volume of the box is

(4)                 V = lwh

(5)              128 = x²h          Substituted (1) and (2) into (4)

(6)                  h = 128/x²     Divided each side by x²

          l + w +h = 16            Divided (1) by 4

          x + x + h = 16           Substituted (2) into 6

(7)          2x + h = 16           Combined like terms

     2x + 128/x² = 16           Substituted (6) into (7)

        2x³ + 128 = 16x²        Multiplied each side by x²

2x³ - 16x²+ 128 = 0            Subtracted 16x² from each side

    x³ - 8x² + 64 = 0           Divided each side by 2

According to the Rational Zeros theorem, a rational root must be a positive or negative factor of 64.

The possible factors are ±1, ±2, ±4, ±8, ±16, ±32, ± 64.

After a little trial-and-error with synthetic division (start in the middle and work down) we find that x = 4 is a zero.              

4|1   -8     0   64

 <u>|      4  -16  -64 </u>

   1  -4  -16      0

So, the cubic equation factors into (x - 4)(x² - 4x + 16) = 0

We can use the quadratic formula to find that the roots of the quadratic are

x = 2 - 2√5 and x = 2+ 2√5

We reject the negative value and find that there are two solutions to the problem.

x = 4 in and x = 2 + 2√5 ≈ 6.472 in

Case 1. x = 4 in

h = 128/x² = 128/4² = 128/16 = 8 in

The dimensions of the box are 4 in × 4 in × 8 in

Also, 4(l + w + h) = 4( 4 + 4 + 8) = 4 × 16 =  64 in

Case 2. x = 6.472 in

h = 128/x² = 128/6.472² = 128/41.89 = 3.056 in

The dimensions of the box are 6.47 in × 6.47 in × 3.06 in

Also, 4(l + w + h) = 4( 6.47 + 6.47 + 3.06) = 4 × 16.00 =  64 in

The two solutions are

(a) 4 in       × 4 in      × 8 in

(b) 6.47 in × 6.47 in × 3.06 in    

7 0
3 years ago
A rectangle with length of 4/9 foot and a width of 2 feet
patriot [66]

Answer:

area of rect = 8/9

Step-by-step explanation:

Area of rect.= (L*W)

Area = (4/9) (2)

Area = (4/9) (2/1)

Area = 8/9

4 0
1 year ago
Read 2 more answers
If a quadratic equation has a real root, what do you know about the other roots of the equation? Explain.
notsponge [240]

Answer:

A Quadratic Equation can have upto 2 roots maximum. So,if one of the roots is a Real number, there are following two possibilities:

1) The other root is also a real number, but a different number

2) Its a repeated root, so the other root is the same number.

The other root cannot be a complex number as its not possible for one root to be real and other to be complex. Either no root will be complex or both will be complex roots.

Following are 3 possibilities for the roots of a quadratic equation:

  1. 2 Real and Distinct roots
  2. 2 Real and Equal roots
  3. 2 Complex roots
7 0
2 years ago
Find the slope of the line passing through the points (2,5) and (8, −4)
brilliants [131]
Slope = -4-5/8-2
Slope = -9/6
6 0
3 years ago
Other questions:
  • Amy is making a cookie recipe which uses 1/2 teaspoon of sugar per batch. She wants to make 5 batches. How many teaspoons of sug
    10·2 answers
  • What is 10x19-5+8=??
    6·2 answers
  • Ok offering the brainiest and 20 point to who ever can solves these question. The answers I marked were wrong.
    8·1 answer
  • What is (20+7) x 9+4
    10·2 answers
  • What is another way to write the expression ​r⋅(18−3)​?
    12·1 answer
  • A .14kg baseball is dropped from rest. It has a momentum of .78kg x m/s just before it lands on the ground. For what amount of t
    6·1 answer
  • The surface area of one cube is twice the surface area of a second cube.
    11·1 answer
  • What is the prime factorization of 603
    11·1 answer
  • I need help please! my test is almost over in 15 min help!!!!!!!!!!!!
    11·1 answer
  • 13.
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!