A 1 F solution stands 1 formula unit per litre and 0.01 F describes the concentration of solution with no deliberation for the real form of existence of species.
Molarity is defined as the ratio of moles of solute to the volume of solution in litres and it is used to describe formality. For accuracy, it is essential to expressed molarity of each species. In case of acetic acid, the molarity of acetic acid molecules is less than 0.01 M due to dissociation.
Thus, it is more precise to say that the concentration of a solution of acetic acid is 0.01 F instead of 0.01 M.
The correct answer is the 3rd option Ductility is a property of a metal. It is the ability of a material to deform under tensile stress.It is characterized by the ability to be stretched into wire-like form which is an ability of metals.
The answer to this problem is Beryllium is an alkaline earth metal.
Answer:
a. 2 HgO(s) ⇒ 2 Hg(l) + O₂(g)
b. 0.957 g
Explanation:
Step 1: Write the balanced equation
2 HgO(s) ⇒ 2 Hg(l) + O₂(g)
Step 2: Convert 130.0 °C to Kelvin
We will use the following expression.
K = °C + 273.15
K = 130.0°C + 273.15
K = 403.2 K
Step 3: Calculate the moles of O₂
We will use the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 1 atm × 0.0730 L/0.0821 atm.L/mol.K × 403.2 K
n = 2.21 × 10⁻³ mol
Step 4: Calculate the moles of HgO that produced 2.21 × 10⁻³ moles of O₂
The molar ratio of HgO to O₂ is 2:1. The moles of HgO required are 2/1 × 2.21 × 10⁻³ mol = 4.42 × 10⁻³ mol.
Step 5: Calculate the mass corresponding to 4.42 × 10⁻³ moles of HgO
The molar mass of HgO is 216.59 g/mol.
4.42 × 10⁻³ mol × 216.59 g/mol = 0.957 g