A should be the products and D should be the reactants. So D should be the answer.
The part of the atom that is involved in chemical changes is A. electron. The electrons that are in the most outer shells are called valence electrons which are easily removed or shared to form bonds. Valence electrons are related to the number of valence electrons
A. A diagram showing the effects of temperature and pressure on phase
Explanation:
A phase diagram is a diagram that shows the effects of temperature and pressure on phase.
- A phase diagram shows how different substances are transformed from one form to another.
- The transformation is an interplay between pressure and temperature.
- The phase graph represents physical state changes.
- A phase change is made up of pressure on the y-axis and temperature on the x - axis.
Learn more:
Phase change brainly.com/question/1875234
#learnwithBrainly
Answer:
When a body moves in a circle with constant speed , it is said to be in uniform circular motion .
Explanation:
- When an object moves in a circular path , its direction changes at each point .
- This change in direction result in change of velocity (velocity is vector quantity which changes if direction of the object change) .However speed do not change (it is scalar quantity , not affected by Direction)
- The Change in velocity produce acceleration ( a = v - u)
- Hence The object always produce acceleration in uniform circular motion .So, Some force (centripetal force) is needed to keep the object in circular motion.
Since
21.2 g H2O was produced, the amount of oxygen that reacted can be obtained
using stoichiometry. The balanced equation was given: 2H₂ + O₂ → 2H₂O and
the molar masses of the relevant species are also listed below. Thus, the
following equation is used to determine the amount of oxygen consumed.
Molar mass of H2O = 18
g/mol
Molar mass of O2 = 32
g/mol
21.2 g H20 x 1 mol
H2O/ 18 g H2O x 1 mol O2/ 2 mol H2O x 32 g O2/ 1 mol O2 = 18.8444 g O2
<span>We then determine that
18.84 g of O2 reacted to form 21.2 g H2O based on stoichiometry. It is
important to note that we do not need to consider the amount of H2 since we can
derive the amount of O2 from the product. Additionally, the amount of H2 is in
excess in the reaction.</span>