<h3>
Answer:</h3>
70.906 g
<h3>
Explanation:</h3>
We are given;
- Atoms of Chlorine = 1.2 × 10^24 atoms
We are required to calculate the mass of Chlorine
- We know that 1 mole of an element contains atoms equivalent to the Avogadro's number, 6.022 × 10^23.
- That is , 1 mole of an element = 6.022 × 10^23 atoms
- Therefore; 1 mole of Chlorine = 6.022 × 10^23 atoms
But since Chlorine gas is a molecule;
- 1 mole of Chlorine gas = 2 × 6.022 × 10^23 atoms
But, molar mass of Chlorine gas = 70.906 g/mol
Then;
70.906 g Of chlorine gas = 2 × 6.022 × 10^23 atoms
= 1.20 × 10^24 atoms
Thus;
For 1.2 × 10^24 atoms ;
= ( 70.906 g/mol × 1.2 × 10^24 atoms ) ÷ (1.20 × 10^24 atoms)
<h3>= 70.906 g </h3>
Therefore, 1.20 × 10^24 atoms of chlorine contains a mass of 70.906 g
=
Answer:
Explanation:
The equation is given as:
CH3CHOHC2H4CHO + CH3OH --> CYCLIC ACETAL + H2O
This above equation is carried out in the presence of a strong acid. There are five mechanisms employed and they are:
Step 1:
Initial formation of the hemiacetal which takes several steps
Step 2:
Addition of a proton. The hemicetal is protonated on the hydroxyl group (-OH group)
Step 3:
As seen a bond is broken to give the H2O molecule and a resonance stabilized cation.
The carbonyl group on the cation is enriched with the oxygen-18 got from the H2O molecule as seen in the mechanism.
Step 4:
An attraction occurs between electrophile and nucleophile i.e the stabilised cation and the lone paids of the methanol.
Step 5:
Finally, a proton (+) is removed from the molecule by a lone pair of electron on the methanol.
Attached are the Steps 1 - 5 mechanism below
First, we need to compute the mass of oxygen found in 100 grams of saltpeter:
mass of oxygen = 100 - (mass of potassium + mass of nitrogen)
= 100 - (38.67 + 13.86)
= 100 - 52.53
mass of oxygen in 100 grams saltpeter = 47.47 grams
Now, we can use cross multiplication to find the mass of oxygen in 328 grams saltpeter as follows:
mass of oxygen = (328 x 47.47) / 100 = 155.7016 grams