The two numbers (rounded) are
<em>5.84823</em> and <em>0.17157</em>
Answer:
1
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
2
+
5
−
2
=
0
x^{2}+5x-2=0
x2+5x−2=0
=
1
a={\color{#c92786}{1}}
a=1
=
5
b={\color{#e8710a}{5}}
b=5
=
−
2
c={\color{#129eaf}{-2}}
c=−2
=
−
5
±
5
2
−
4
⋅
1
(
−
2
)
√
2
⋅
1
Step-by-step explanation:
this should help
Answer:
![\sqrt[4]{x^5}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7Bx%5E5%7D)
Step-by-step explanation:
A fraction exponent converts into a radical. The denominator is the index of the radical (farthest left number) and the numerator is the exponent of the base inside (the farthest right number). The base of the fraction exponent is the base number in green. To write this expression, simply the exponents into one exponent and one base.

Now convert to the radical.
![x^{\frac{5}{4}} = \sqrt[4]{x^5}](https://tex.z-dn.net/?f=x%5E%7B%5Cfrac%7B5%7D%7B4%7D%7D%20%3D%20%5Csqrt%5B4%5D%7Bx%5E5%7D)
Answer:
but its right
Step-by-step explanation: