Answer:
ω = 2.1 rad/sec
Explanation:
- As the rock is moving along with the merry-go-round, in a circular trajectory, there must be an external force, keeping it on track.
- This force, that changes the direction of the rock but not its speed, is the centripetal force, and aims always towards the center of the circle.
- Now, we need to ask ourselves: what supplies this force?
- In this case, the only force acting on the rock that could do it, is the friction force, more precisely, the static friction force.
- We know that this force can be expressed as follows:

where μs = coefficient of static friction between the rock and the merry-
go-round surface = 0.7, and Fn = normal force.
- In this case, as the surface is horizontal, and the rock is not accelerated in the vertical direction, this force in magnitude must be equal to the weight of the rock, as follows:
- Fn = m*g (2)
- This static friction force is just the same as the centripetal force.
- The centripetal force depends on the square of the angular velocity and the radius of the trajectory, as follows:

- Since (1) is equal to (3), replacing (2) in (1) and solving for ω, we get:

- This is the minimum angular velocity that would cause the rock to begin sliding off, due to that if it is larger than this value , the centripetal force will be larger that the static friction force, which will become a kinetic friction force, causing the rock to slide off.
Answer:
The value of the inductance is 175.9 mH.
Explanation:
Given that,
Capacitor 
Frequency = 60.0 Hz
The inductor and capacitor is connected in parallel, the voltage across each of these elements is the same.
We have,

Using ohm's law




Put the value into the formula




Hence, The value of the inductance is 175.9 mH.
Answer:
Q = 144612 Joules.
Explanation:
Given the following data;
Mass = 2.6 kg
Initial temperature = -27°C to Kelvin = 273 + (-27) = 246K
Final temperature = 0°C to Kelvin = 273K
Specific heat capacity = 2060 J/kgK.
To find the quantity of heat absorbed;
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt = T2 - T1
dt = 273 - 246
dt = 27 K
Substituting the values into the equation, we have;
Q = 144612 Joules.
A toaster needs a 110-volt outlet because it doesn’t need
too much electricity. Electricity can be
converted to heat, and toaster only needs to be heated and nothing else that
requires extra electricity while clothes dyer requires higher voltage because
it needs more effort and electricity in order to do its function.