Answer:
The Finite Element Analysis (FEA) is the simulation of any given physical phenomenon using the numerical technique called Finite Element Method (FEM). Engineers use it to reduce the number of physical prototypes and experiments and optimize components in their design phase to develop better products, faster.
Answer:
2.7 Pizzas.
Explanation:
The power required to walk through 5km in 1 hour is 380W.
A watt is basically Jules per second, then we need to standardized this measurement to second.
5km/hr is equal to,

Walking by 2.5 hours is equal to a distance of,

The total energy required then would be,

Then we know that one pizza slice gives
of energy, the total pizza needed are,

<em>Then you need to buy 3 pizza.</em>
Answer:
114.26
Explanation:
a)Formula for per unit impedance for change of base is
Zpu2= Zpu1×(kV1/kV2)²×(kVA2/kVA1)
Zpu2: New per unit impedance
Zpu1: given per unit impedance
kV1: give base voltage
kV2: New bas votlage
kVA1: given bas power
kVA2: new base power
In the question
Zpu2=??
Zpu1= 0.3
kV2=24kV
kV1= 13.8 kV
kVA2= 1MVA ×1000= 1000 kVA
kVA1=500kVA
Zpu2= 0.3(13.8/24)²×(1000/500)
Zpu2= 0.198
b) to find ohmic impedance we will first calculate base value of impedance(Zbase). So,
Zbase= kV²/MVA
Zbase= 13.8²/(500/1000)
Zbase=380.88
Now that we have base value of impedance, Zbase, we can calculate actual ohmic value of impedance(Zactual) by using the following formula:
Zpu=Zactual/Zbase
0.3= Zactual/380.88
Zactual= 114.26 ohms
Given that the block have two applied masses 250 g at East and 100 g at South. In order to make a situation in which block moves towards point A, we have to apply minimum number of masses to the blocks. In order to prevent block moving toward East, we have to apply a mass at West, equal to the magnitude of mass at East but opposite in direction. Therefore, mass of 250 g at West is the required additional mass that has to be added. There is already 100 g of mass acting at South, that will attract block towards South or point A. No need to add further mass in North-South direction.