Answer:
31.1 N
Explanation:
m = mass attached to string = 0.50 kg
r = radius of the vertical circle = 2.0 m
v = speed of the mass at the highest point = 12 m/s
T = force of the string on the mass attached.
At the highest point, force equation is given as

Inserting the values

T = 31.1 N
Answer:
The gravitational acceleration of the planet is, g = 8 m/s²
Explanation:
Given data,
The distance the object falls, s = 144 m
The time taken by the object is, t = 6 s
Using the III equations of motion
S = ut + ½ gt²
∴ g = 2S/t²
Substituting the given values,
g = 2 x 144 /6²
= 8 m/s²
Hence, the gravitational acceleration of the planet is, g = 8 m/s²
Answer:
The magnetic flux through a loop is zero when the B field is perpendicular to the plane of the loop.
Explanation:
Magnetic flux are also known as the magnetic line of force surrounding a bar magnetic in a magnetic field.
It is expressed mathematically as
Φ = B A cos(θ) where
Φ is the magnetic flux
B is the magnetic field strength
A is the area
θ is the angle that the magnetic field make with the plane of the loop
If B is acting perpendicular to the plane of the loop, this means that θ = 90°
Magnetic flux Φ = BA cos90°
Since cos90° = 0
Φ = BA ×0
Φ = 0
This shows that the magnetic flux is zero when the magnetic field strength B is perpendicular to the plane of the loop.
Answer:
Decreased by a factor of 4.5
Explanation:
"We have Newton formula for attraction force between 2 objects with mass and a distance between them:

where
is the gravitational constant on Earth.
are the masses of the object and Earth itself. and R distance between, or the Earth radius.
So when R is tripled and mass is doubled, we have the following ratio of the new gravity over the old ones:




Since
and 

So gravity would have been decreased by a factor of 4.5
Answer:
P = 1097 Watt
Explanation:
given,
length of stairs, L = 130 m
inclination with horizontal,θ = 30°
mass of the football player = 105 Kg
time = 61 s
we know,

Work = change in Potential energy
h = L sin 30°
h = 130 x 0.5
h = 65 m
W = m g h
W = 105 x 9.8 x 65
W = 66885 J
now,

P = 1097 Watt
hence, the power output on the way is 1097 W