Answer:
<em>1.01 W/m</em>
Explanation:
diameter of the pipe d = 30 mm = 0.03 m
radius of the pipe r = d/2 = 0.015 m
external air temperature Ta = 20 °C
temperature of pipe wall Tw = 150 °C
convection coefficient at outer tube surface h = 11 W/m^2-K
From the above,<em> we assumed that the pipe wall and the oil are in thermal equilibrium</em>.
area of the pipe per unit length A =
=
m^2/m
convectional heat loss Q = Ah(Tw - Ta)
Q = 7.069 x 10^-4 x 11 x (150 - 20)
Q = 7.069 x 10^-4 x 11 x 130 = <em>1.01 W/m</em>
Answer:
Explanation:
1- Density increase as the temperature decreases. This is the reason why liquid water is more dense than solid water.
2- The only things that affect the period of a simple pendulum are its length and the acceleration due to gravity.
3- not really sure for that one...I will think about that.
4- same reason for number 3
A. gravity is your answer hope this helps
Answer:
2d
Explanation:
For any instance equivalent force acting on the body is

Where
m is the mass of the object
k is the force constant of the spring
d is the extension in the spring
and
d/dt(dx/dt)= is the acceleration of the object
solving the above equation we get

where

A is the amplitude of oscillation from the mean position.
k= spring constant , T= time period
Here we are assuming that at t=T/4
x= 0 since, no extension in the spring
then
A=- d
Hence
x=- d sin wt + d
now, x is maximum when sin wt=- 1
Therefore,
x(maximum)=2d