The absence of external force in the outer space, allows the piece of rock to continue moving at the same velocity for thousands of years.
<h3>Absence of external force on the outer space</h3>
The outer space is almost an absolute vacuum, because it's nearly empty. There is no matter such as air in the outer space that will provide an external force needed to change the velocity of the piece of rock.
From Newton's first law of motion, an object in a state of rest or uniform motion in a straight line, will continue in that state unless it is acted upon by an external force.
Thus, the absence of external force in the outer space, allows the piece of rock to continue moving at the same velocity for thousands of years.
Learn more about outer space here: brainly.com/question/24701339
Complete Question
An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The electric field in the wire changes with time as E(t)=0.0004t2−0.0001t+0.0004 newtons per coulomb, where time is measured in seconds.
I = 1.2 A at time 5 secs.
Find the charge Q passing through a cross-section of the conductor between time 0 seconds and time 5 seconds.
Answer:
The charge is 
Explanation:
From the question we are told that
The diameter of the wire is 
The radius of the wire is 
The resistivity of aluminum is 
The electric field change is mathematically defied as

Generally the charge is mathematically represented as

Where A is the area which is mathematically represented as

So

Therefore

substituting values
![Q = 120 \int\limits^{t}_{0} { [ 0.0004t^2 - 0.0001t +0.0004] } \, dt](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5Cint%5Climits%5E%7Bt%7D_%7B0%7D%20%7B%20%5B%200.0004t%5E2%20-%200.0001t%20%2B0.0004%5D%20%7D%20%5C%2C%20dt)
![Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | t} \atop {0}} \right.](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004t%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20t%5E2%7D%7B2%7D%20%2B0.0004t%5D%20%7D%20%20%5Cleft%20%7C%20t%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
From the question we are told that t = 5 sec
![Q = 120 [ \frac{0.0004t^3 }{3} - \frac{0.0001 t^2}{2} +0.0004t] } \left | 5} \atop {0}} \right.](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004t%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20t%5E2%7D%7B2%7D%20%2B0.0004t%5D%20%7D%20%20%5Cleft%20%7C%205%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.)
![Q = 120 [ \frac{0.0004(5)^3 }{3} - \frac{0.0001 (5)^2}{2} +0.0004(5)] }](https://tex.z-dn.net/?f=Q%20%3D%20120%20%5B%20%5Cfrac%7B0.0004%285%29%5E3%20%7D%7B3%7D%20-%20%5Cfrac%7B0.0001%20%285%29%5E2%7D%7B2%7D%20%2B0.0004%285%29%5D%20%7D)

Answer:
The answer to your question is m₂ = 38.5 kg
Explanation:
Data
distance = d = 2.1 x 10⁻¹ m
Force = 3.2 x 10⁻⁶ N
m₁ = 55 kg
m₂ = ?
G = 6.67 x 10 ⁻¹¹ Nm²/kg²
Process
1.- To solve this problem use Newton's law of Universal Gravitation.
F = G m₁m₂ / r²
-Solve for m₂
m₂ = Fr² / Gm₁
2.- Substitution
m₂ = (3.2 x 10⁻⁶)(2.1 x 10⁻¹)² / (6.67 x 10⁻¹¹)(55)
3.- Simplification
m₂ = 1.411 x 10⁻⁷ / 3.669 x 10⁻⁹
4.- Result
m₂ = 38.5 kg
The speed change : Δv = 0.41 m/s
<h3>Further explanation</h3>
Given
mass = 5.5 kg
Force = 15 N
time = 0.15 s
Required
the speed change
Solution
Newton 2nd's law
Impulse and momentum
F = m.a
F = m . Δv/t
F.t = m.Δv
Input the value :
15 N x 0.15 s = 5.5 kg x Δv
Δv = 0.41 m/s
Answer:

Explanation:
From the question we are told that:
Height 
Radius 
Height of water 
Gravity 
Density of water 
Generally the equation for Volume of water is mathematically given by


Where
y is a random height taken to define dv
Generally the equation for Work done to pump water is mathematically given by

Substituting dv


Therefore




![W=3420.84*0.25[2401-65536]](https://tex.z-dn.net/?f=W%3D3420.84%2A0.25%5B2401-65536%5D)


'
'