Explanation:
Different atoms absorb and emit specific wavelengths of electromagnetic radiation and nothing in between. These absorption and emission spectra are actually used to identify atoms of elements in a substance. This phenomenon is explained by Bohr's theory of quantized energy levels in an atom – called orbital levels. When an electron 'jumps' from a lower to higher orbital level, it absorbs a specific wavelength of electromagnetic radiation specific to the ‘jump’. Vice versa, when an electron 'jumps' to a lower orbital level is emits an equivalent and specific wavelength of electromagnetic radiation.
Learn More:
For more on emission spectra check out;
brainly.com/question/12472637
brainly.com/question/8788867
#LearnWithBrainly
Depending on what you are doing, virtual, or in school, you can contact your school and you ask them, or you can have your teacher, based on the subject, tutor you.
<3
Answer: the reaction will produce 15.3 g of
KCl.
explanation:
1. write the balanced equation.
2KClO
3
→
2KCl
+
3O
2
2. calculate the moles of
KClO
3
.
Moles of KClO
3
=
25.0
g KClO
3
×
1 mol KClO
3
122.55
g KClO
3
=
0.2046 mol KClO
3
3. calculate the moles of
KCl
.
Moles of KCl
=
0.2046
mol KClO
3
×
2 mol KCl
2
mol KClO
3
=
0.2046 mol KCl
4. calculate the mass of
KCl
.
Mass of KCl
=
0.2046
mol KCl
×
74.55 g KCl
1
mol KCl
=
15.3 g KCl
Three resonance structures can be drawn for the allyl cation while two resonance structures can be drawn for the amidate ion.
Sometimes, we cannot fully describe the bonding in a chemical specie using a single chemical structure. In such cases, we have to use a number of structures which cooperatively represent the actual bonding in the molecule. These structures are called resonance or canonical structures.
The resonance structures of the allyl cation and the amidate ion are shown in the images attached to this answer. These structures show the different bonding extremes in these organic ions.
Learn more: brainly.com/question/4933048
Idk how to write the formula I had this same question