Human teeth are made up of four different types of tissues.
The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
The equation for aqueous solution of H₂CO₃ is
H₂CO₃ → H₂O + CO₂
The charge balance equation is
[HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Thus from the above conclusion we can say that The charge balance equation for an aqueous solution of H₂CO₃ that ionizes to HCO₃⁻ and CO₃⁻² is [HCO₃⁻] = 2[CO₃⁻²] + [H⁺] + [OH⁻]
Learn more about the Balanced Chemical equation here: brainly.com/question/26694427
#SPJ4
Answer:48kg of SiO2, 0.5kg of Al2O3, and 1.5kg of B2O3
Will be the final product
Explanation:
I) 96wt% of SiO2 will amount to 96/100*50 = 0.96*50=48kg of SiO2
ii) 1wt% of Al2O3 will amount to 1/100*50 = 0.01*50=0.5kg of Al2O3
III) 3wt% of B2O3 will amount to 3/100*50 = 0.03*50=1.5kg of B2O3..
The overall product form 48+ 0.5+1.5= 50kg
Answer: False
Explanation: There are four carbon atoms , eight hydrogen atoms and two Bromine atoms.
As the carbon forms four covalent bonds, every carbon must have four bonds and thus the formula of the compound is
.
IUPAC name of the compound is 1,2 di-bromobutane. As the carbon chain is 4 atoms long the word used is but and all the bonds are single bonds, thus the suffix used is ane.