Answer:
1m= 100cm
?= 2cm let ? be (n)
cross multiply
100n = 2
n= 2÷100
n= 0.02m
therefore 2cm is equal to 0.02 m
Explanation:
From the given figure,
Mass of ball A is 4.9 kg and its initial speed is 8 m/s.
Mass of ball B is 1.9 kg and its initial speed is 14 m/s.
Mass of ball C is 0.7 kg and its initial speed is 2 m/s.
We need to find the final speed of the balls 1 s after being thrown. They all are thrown upward under the action of gravity. The equation of motion is : v = u -gt, g = 10 m/s²
For ball A,
v = 8-10(1) = = -2 m/s (downward)
For B,
v = 14-10(1) = 4 m/s (upward)
For C,
v = 2-10(1) = -8 m/s (downward)
It means the ranking is B>A>C i.e. the speed of ball B is the most and that of C is least.
All the balls are moving under the action of gravity. It would mean that the acceleration for all balls is same i.e. 10 m/s²
So the answer is B) he should wire each room in parallel. This is because when the bulbs are in parallel if one part of the parallel circuit is broken (eg when you switch a light off) then the current can still flow to all the other bulbs, meaning they stay turned on. Hope this helps :)
Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. This generalized the work of Georg Ohm and preceded the work of Maxwell.