The Richter Scale<span> is not commonly </span>used<span> anymore, except for small </span>earthquakes<span>recorded locally, for which ML and Mblg are the only </span>magnitudes<span> that can be measured. For all other </span>earthquakes<span>, the </span>moment magnitude scale<span> is a more accurate measure of the </span>earthquake<span> size.</span>
Mass of the are is 2100 kg
Well I don't know !
Let's work it out:
Weight = (mass) x (local acceleration of gravity)
117.6 N = (12 kg) x (gravity)
Gravity on Planet A = (117.6 N) / (12 kg)
= 9.8 m/s² exactly
The gravity on Planet-A is so close to Earth gravity
that nobody could ever tell the difference without
making sensitive measurements.
They are essentially equal.
Answer:
50 N
Explanation:
Since the refrigerator doesn’t move, that means the force of friction equals the amount of force the child exerts on the fridge. If the friction force were greater than the force by the child, the fridge would start accelerating towards the child. If it were less than the force the child exerted, the fridge would start accelerating away from the child. Therefore, the net force must be 0, in this case, the friction force is equal to the force the child exerted, for it to stay at rest (as Newton’s First Law stated).
I hope this helps! :)
<span>If the reactants and the products are in a closed container and at equilibrium, so think of "trapping"</span>