Answer:
The temperature should be higher than 437.9 Kelvin (or 164.75 °C) to be spontaneous
Explanation:
<u>Step 1:</u> Data given
ΔH∘=20.1 kJ/mol
ΔS is 45.9 J/K
<u>Step 2:</u> When is the reaction spontaneous
Consider temperature and pressure = constant.
The conditions for spontaneous reactions are:
ΔH <0
ΔS > 0
ΔG <0 The reaction is spontaneous at all temperatures
ΔH <0
ΔS <0
ΔG <0 The reaction is spontaneous at low temperatures ( ΔH - T*ΔS <0)
ΔH >0
ΔS >0
ΔG <0 The reaction is spontaneous at high temperatures ( ΔH - T*ΔS <0)
<u>Step 3:</u> Calculate the temperature
ΔG <0 = ΔH - T*ΔS
T*ΔS > ΔH
T > ΔH/ΔS
In this situation:
T > (20100 J)/(45.9 J/K)
T > 437.9 K
T > 164.75 °C
The temperature should be higher than 437.9 Kelvin (or 164.75 °C) to be spontaneous
Answer:
Fe
Explanation:
<em>Ferrum</em><em> </em>[Iron] has the most stable nucleus because of <em>binding</em><em> </em><em>energy</em><em> </em><em>per</em><em> </em><em>nucleon</em><em>.</em><em> </em>Although Uranium<em> </em>is<em> </em>another possibility, in this case, it is more radioactive than Iron. It disintegrates very swiftly that all is done so, just to achieve stability.
I hope this helps you out alot, and as always, I am joyous to assist anyone at any time.
Answer:
Cl
Explanation:
The element Cl will have the strongest ionization energy from the given choices. Most non-metals have higher ionization energy compared to metals.
Ionization energy is the energy required to remove the most loosely held electron from the gaseous phase of an atom.
- As you go from left to right on the periodic table, it increases progressive
- From top to bottom, the ionization energy reduces significantly.
- The attractive force between the protons in the nucleus and the electrons plays a very important role.
- In metals, they have very large atomic radius, the attractive force on the outer electrons is very weak.
- This is not the case in non-metals