Answer:
Step-by-step explanation:
From the given information:
The price reduction = 98% = 0.98
![Then \ the \ expected \ payoff \ = \[(probability \ of \ matching \ price \ reduction \ * \ size \ of \ loss \ from \ price \ cuts \ ) \ + \ ( \ probability \ o f \ rivals\ not \ matching \ * \ gain \ from \ price \ cuts )]](https://tex.z-dn.net/?f=Then%20%5C%20%20the%20%5C%20%20expected%20%20%5C%20payoff%20%20%5C%20%3D%20%20%5C%5B%28probability%20%5C%20%20of%20%5C%20matching%20%5C%20price%20%5C%20%20reduction%20%20%5C%20%2A%20%20%5C%20size%20%5C%20of%20%5C%20%20loss%20%20%5C%20from%20%5C%20%20price%20%5C%20%20cuts%20%5C%20%29%20%5C%20%20%2B%20%20%5C%20%28%20%5C%20probability%20%5C%20%20o%20f%20%5C%20%20rivals%5C%20%20not%20%5C%20%20matching%20%20%5C%20%2A%20%5C%20%20gain%20%5C%20from%20%5C%20%20price%20%5C%20%20cuts%20%20%29%5D)
where;
P(rival not matching ) = (100 - 98)% = 2%
P(rival not matching ) = 0.02
The expected payoff = [(0.98 * -800) + (0.02*50000)]
The expected payoff = [( -784+ 1000)]
The expected payoff = 216
(b) Probability of rivals reducing price = 5%
= 5/100
= 0.05
∴
Probability of rivals reducing price = 1 - 0.05 = 0.95
The expected payoff = (0.05 * -6000) + (0.95 *0)
The expected payoff = -300 + 0
The expected payoff = -300
(c) Yes.
Based on answers (a) and (b), the firm should cut the price.