Answer:
15.35 g of (NH₄)₃PO₄
Explanation:
First we need to look at the chemical reaction:
3 NH₃ + H₃PO₄ → (NH₄)₃PO₄
Now we calculate the number of moles of ammonia (NH₃):
number of moles = mass / molecular wight
number of moles = 5.24 / 17 = 0.308 moles of NH₃
Now from the chemical reaction we devise the following reasoning:
if 3 moles of NH₃ are produce 1 mole of (NH₄)₃PO₄
then 0.308 moles of NH₃ are produce X moles of (NH₄)₃PO₄
X = (0.308 × 1) / 3 = 0.103 moles of (NH₄)₃PO₄
mass = number of moles × molecular wight
mass = 0.103 × 149 = 15.35 g of (NH₄)₃PO₄
Answer:
no
Explanation:
it is human imagination about scary things that brought about ghost
The answer to this question would be: <span>1) Electrons occupy regions of space
</span><span>
In plum pudding model, the atoms are drawn as pudding and the negative particle is spread around the pudding. In this model, the electron is spread but not moving in orbit. Rutherford model that comes afterward is the one that says most of the atoms is empty space.</span>
pH of solution = 13.033
<h3>Further explanation</h3>
Given
2.31 g Ba(OH)₂
250 ml water
Required
pH of solution
Solution
Barium hydroxide is fully ionized, means that Ba(OH)₂ is a strong base
So we use a strong base formula to find the pH
[OH ⁻] = b. Mb where
b = number of OH⁻
/base valence
Mb = strong base concentration
Molarity of Ba(OH)₂(MW=171.34 g/mol) :

Ba(OH)₂ ⇒ Ba²⁺ + 2OH⁻(b=valence=2)
[OH⁻]= 2 . 0.054
[OH⁻] = 0.108
pOH= - log 0.108
pOH=0.967
pOH+pH=14
pH=14-0.967
pH=13.033
Answer:
Mass of NO produced is "6.5 g".
Explanation:
The given reaction is:
⇒ 
Now,
⇒ 
⇒ 
⇒ 
- We shouldn't have to acknowledge the sum of H₂O as it would be in excess. It's going to mot finish resolving answer.
- We provided 0.65 mol of NO₂, of which 3 mol of NO₂ = 1 mol of NO was previously given.
Accordingly,
is created.
So,
The mass of NO will be:
= 
= 
= 