Answer:
A) 2280 and length is 12mm and width is 190mm
B) 190, 12
Step-by-step explanation:
Area of 1 cylinder: 456
456*5= 2280
38*5=190
diameter:190mm
height:12mm
190*12= 2280
Is this 2 different questions?
<span>Acceleration of a passenger is centripetal acceleration, since the Ferris wheel is assumed at uniform speed:
a = omega^2*r
omega and r in terms of given data:
omega = 2*Pi/T
r = d/2
Thus:
a = 2*Pi^2*d/T^2
What forces cause this acceleration for the passenger, at either top or bottom?
At top (acceleration is downward):
Weight (m*g): downward
Normal force (Ntop): upward
Thus Newton's 2nd law reads:
m*g - Ntop = m*a
At top (acceleration is upward):
Weight (m*g): downward
Normal force (Nbottom): upward
Thus Newton's 2nd law reads:
Nbottom - m*g = m*a
Solve for normal forces in both cases. Normal force is apparent weight, the weight that the passenger thinks is her weight when measuring by any method in the gondola reference frame:
Ntop = m*(g - a)
Nbottom = m*(g + a)
Substitute a:
Ntop = m*(g - 2*Pi^2*d/T^2)
Nbottom = m*(g + 2*Pi^2*d/T^2)
We are interested in the ratio of weight (gondola reference frame weight to weight when on the ground):
Ntop/(m*g) = m*(g - 2*Pi^2*d/T^2)/(m*g)
Nbottom/(m*g) = m*(g + 2*Pi^2*d/T^2)/(m*g)
Simplify:
Ntop/(m*g) = 1 - 2*Pi^2*d/(g*T^2)
Nbottom/(m*g) = 1 + 2*Pi^2*d/(g*T^2)
Data:
d:=22 m; T:=12.5 sec; g:=9.8 N/kg;
Results:
Ntop/(m*g) = 71.64%...she feels "light"
Nbottom/(m*g) = 128.4%...she feels "heavy"</span>
Answer:
The answer is: 31.96
Step-by-step explanation:
Hope this helps! Have a nice day! Please consider making me Brainliest!
Steps: Line up the equations then solve. 4*6 is 24 and 7*8 is 56 then round, tada!
4.7 x
<u>6.8</u>
<u>24.56</u>
<u>Round: 31.96</u>