Answer:
≈ 2.1 R
Explanation:
The moment of inertia of the bodies can be calculated by the equation
I = ∫ r² dm
For bodies with symmetry this tabulated, the moment of inertia of the center of mass
Sphere
= 2/5 M R²
Spherical shell
= 2/3 M R²
The parallel axes theorem allows us to calculate the moment of inertia with respect to different axes, without knowing the moment of inertia of the center of mass
I =
+ M D²
Where M is the mass of the body and D is the distance from the center of mass to the axis of rotation
Let's start with the spherical shell, axis is along a diameter
D = 2R
Ic =
+ M D²
Ic = 2/3 MR² + M (2R)²
Ic = M R² (2/3 + 4)
Ic = 14/3 M R²
The sphere
Is =
+ M [
²
Is = Ic
2/5 MR² + M
² = 14/3 MR²
² = R² (14/3 - 2/5)
= √ (R² (64/15)
= 2,066 R
The electric potential at point A in the electric field= 0.099 x 10 ⁻¹v
<u>Explanation</u>:
Given data,
charge = 5.5 x 10¹² C
k =9.00 x 10⁹
The electric potential V of a point charge can found by,
V= kQ / r
Assuming, r=5.00×10⁻² m
V= 5.5 x 10⁻¹²C x 9.00 x 10⁹ / 5.00×10⁻² m
V= 49.5 x 10⁻³/ 5.00×10⁻²
Electric potential V= 0.099 x 10⁻¹v
Answer:
I beleive it would shoot very far up into the sky
Explanation:
Answer and explanation:
A correct option is an option (B).
The electrical force between two charges is given as,

The electrical force is directly proportional to the product of two charges. Thus Force will depend on two charges irrespective of their signs.
Option (A) is incorrect because if charges are opposite, the value of force will not be zero. It will be -ve.
Option (C) is incorrect because the force is directly proportional to the product of charges, it depends on the amount of charge.
Option (D) is also incorrect because the force in inversly proportional to the distance between two charges. Thus, if the distance between two charges is increased, the force between two charges will decrease.
Concllusion:
The correct option is option (B).