CORRECT ANSWER:
a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.
STEP-BY-STEP EXPLANATION:
The complete question from book is
According to Figure 9.6, what is a key difference between cell signaling by a cell-surface receptor and cell signaling by an intracellular receptor?
a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.
b- Signaling molecules that bind to cell-surface receptors lead to cellular responses restricted to the cytoplasm; signaling molecules that bind to intracellular receptors lead to cellular responses restricted to the nucleus.
c- Cell-surface receptors bind to specific signaling molecules; intracellular receptors bind any signaling molecule.
d- Cell-surface receptors typically bind to signaling molecules that are smaller than those bound by intracellular receptors.
e- None of the other answer options is correct.
Answer:
10 Kg
Explanation:
Force is equal to mass times acceleration
therefore mass is equal to force divided by acceleration
please mark me brainliest
A. The cliff was 30.7 m high
B. I also got 9.5 as the horizontal distance
Here is my work, I find making charts like this one to find knowns and unknowns can be helpful
Answer:
planet that is farthest away is planet X
kepler's third law
Explanation:
For this exercise we can use Kepler's third law which is an application of Newton's second law to the case of the orbits of the planets
T² = (
a³ = K_s a³
Let's apply this equation to our case
a =
for this particular exercise it is not necessary to reduce the period to seconds
Plant W
10² = K_s
a_w =
a_w =
4.64
Planet X
a_x =
a_x = \frac{1}{ \sqrt[3]{K_s} } 74.3
Planet Y
a_y =
a_y = \frac{1}{ \sqrt[3]{K_s} } 18.6
Planet z
a_z =
a_z = \frac{1}{ \sqrt[3]{K_s} } 41.8
From the previous results we see that planet that is farthest away is planet X
where we have used kepler's third law