Answer:
7.344 s
Explanation:
A = 0.15 x 0.3 m^2 = 0.045 m^2
N = 240
e = - 2.5 v
B1 = 0.1 T
B2 = 1.8 T
ΔB = B2 - B1 = 1.8 - 0.1 = 1.7 T
Δt = ?
e = - dФ/dt
e = - N x A x ΔB/Δt
- 2.5 = - 240 x 0.045 x 1.7 / Δt
2.5 = 18.36 / Δt
Δt = 7.344 s
Answer:
15.8 V
Explanation:
The relationship between capacitance and potential difference across a capacitor is:

where
q is the charge stored on the capacitor
C is the capacitance
V is the potential difference
Here we call C and V the initial capacitance and potential difference across the capacitor, so that the initial charge stored is q.
Later, a dielectric material is inserted between the two plates, so the capacitance changes according to

where k is the dielectric constant of the material. As a result, the potential difference will change (V'). Since the charge stored by the capacitor remains constant,

So we can combine the two equations:

and since we have
V = 71.0 V
k = 4.50
We find the new potential difference:

The refrigerator's coefficient of performance is 6.
The heat extracted from the cold reservoir Q cold (i.e., inside a refrigerator) divided by the work W required to remove the heat is known as the coefficient of performance, or COP, of a refrigerator (i.e., the work done by the compressor). The required inside temperature and the outside temperature have a significant impact on the COP.
As the inside temperature of the refrigerator decreases, its coefficient of performance decreases. The coefficient of performance (COP) of refrigeration is always more than 1.
The heat produced in the cold compartment, H = 780.0 J
Work done in ideal refrigerator, W = 130.0 J
Refrigerator's coefficient of performance = H/W
= 780/130
= 6
Therefore, the refrigerator's coefficient of performance is 6.
Energy conservation requires the exhaust heat to be = 780 + 130
= 910 J
Learn more about coefficient here:
brainly.com/question/18915846
#SPJ4
Answer:
is the current through the body of the man.
energy dissipated.
Explanation:
Given:
- time for which the current lasted,

- potential difference between the feet,

- resistance between the feet,

<u>Now, from the Ohm's law we have:</u>


is the current through the body of the man.
<u>Energy dissipated in the body:</u>


