Refer to the figure shown below.
The velocity of the child and the velocity of the ship should be added vectorially to find the speed and direction of the child relative to the water surface.
The magnitude of the child's velocity is
v = √(2² + 18²) = 18.11 mph
The direction of the child's speed is
θ = tan⁻¹ (18/2) = tan⁻¹ 9 = 83.7° north of east or counterclockwise from the eastern direction.
Answer:
The magnitude is 18.1 mph.
The direction is 84° north of east.
The matter from the explosion can reach him, hitting him. He should be able to feel that.
Answer:
m₁ / m₂ = 1.3
Explanation:
We can work this problem with the moment, the system is formed by the two particles
The moment is conserved, to simulate the system the particles initially move with a moment and suppose a shock where the particular that, without speed, this determines that if you center, you should be stationary, which creates a moment equal to zero
p₀o = m₁ v₁ + m₂ v₂
pf = 0
m₁ v₁ + m₂ v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂= - (-6.2) / 4.7
m₁ / m₂ = 1.3
Another way to solve this exercise is to use the mass center relationship
Xcm = 1/M (m₁ x₁ + m₂ x₂)
We derive from time
Vcm = 1/M (m₁ v₁ + m₂v₂)
As they say the velocity of the center of zero masses
0 = 1/M (m₁ v₁ + m₂v₂)
m₁ v₁ + m₂v₂ = 0
m₁ / m₂ = -v₂ / v₁
m₁ / m₂ = 1.3
Answer:
The centripetal force on body 2 is 8 times of the centripetal force in body 1.
Explanation:
Body 1 has a mass m, and its moving in a circle with a radius r at a speed v. The centripetal force acting on it is given by :

Body 2 has a mass 2m and its moving in a circle of radius 4r at a speed 4v. The centripetal force on body 2 is :

So, the centripetal force on body 2 is 8 times of the centripetal force in body 1.
Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter
