1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
german
3 years ago
12

A rock with a mass of 0.3 kg falls from the top of a cliff. If it takes the rock 2.5 s to reach the ground, what was the impulse

on the rock during the fall?
Physics
1 answer:
kaheart [24]3 years ago
4 0
Impulse=force x time
force=mass x acceleration due to gravity
force=
300 \times 10 = 3000
impulse =3000 x 2.5= ( sorry i don't have a calculator right now so you must calculate this yourself)
I converted from kg to g because it is the standard.
Hope this helps you.
You might be interested in
The cheetah is considered the fastest running animal in the world. Cheetahs can accelerate to a speed of 21.7 m/s in 2.50 s and
viktelen [127]

Answer:

1) 64.2 mi/h

2) 3.31 seconds

3) 47.5 m

4) 5.26 seconds

Explanation:

t = Time taken = 2.5 s

u = Initial velocity = 0 m/s

v = Final velocity = 21.7 m/s

s = Displacement

a = Acceleration

1) Top speed = 28.7 m/s

1 mile = 1609.344 m

1\ m=\frac{1}{1609.344}\ miles

1 hour = 60×60 seconds

1\ s=\frac{1}{3600}\ hours

28.7\ m/s=\frac{\frac{28.7}{1609.344}}{\frac{1}{3600}}=64.2\ mi/h

Top speed of the cheetah is 64.2 mi/h

Equation of motion

v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow t=\frac{21.7-0}{2.5}\\\Rightarrow a=8.68\ m/s^2

Acceleration of the cheetah is 8.68 m/s²

2)

v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{28.7-0}{8.68}\\\Rightarrow t=3.31\ s

It takes a cheetah 3.31 seconds to reach its top speed.

3)

v^2-u^2=2as\\\Rightarrow s=\frac{v^2-u^2}{2a}\\\Rightarrow s=\frac{28.7^2-0^2}{2\times 8.68}\\\Rightarrow s=47.5\ m

It travels 47.5 m in that time

4) When s = 120 m

s=ut+\frac{1}{2}at^2\\\Rightarrow 120=0\times t+\frac{1}{2}\times 8.68\times t^2\\\Rightarrow t=\sqrt{\frac{120\times 2}{8.68}}\\\Rightarrow t=5.26\ s

The time it takes the cheetah to reach a rabbit is 120 m is 5.26 seconds

8 0
3 years ago
Nancy immediately remembers she had promised to return her grandmother's call from earlier this morning. What type of memory is
Solnce55 [7]
I believe its Procedural Memory
6 0
3 years ago
Review 1: A plane is located x = 40 miles (horizontally) away from an airport at an altitude of h miles. Radar at the airport de
-Dominant- [34]

Explanation:

Let h is the height of the plane above ground. x is the horizontal distance between the ground and the airport. Let s(t) is the distance between the plane and the airport. So,

s(t)^2={h^2+x^2}...........(1)

Given, h = 4, x = 40 and s(t) = -20 mph

Differentiate equation (1) wrt t

2s(t)s'(t)=2x(t)x'(t)

x'(t)=\dfrac{s(t)s'(t)}{x(t)}

When x = 40, s(t)=\sqrt{40^2+4^2}=40.19\ m

x'(t)=\dfrac{-240s(t)}{x(t)}

x'(t)=\dfrac{-240\times 40.19}{40}

x'(t)=-241.14\ m/s

So, the speed of the airplane is 241.14  m/s. Hence, this is the required solution.

8 0
3 years ago
A6 cm object is 8 cm from a convex lens that has a focal length of 2.7 cm. The image is 4 cm from the lens. The height of the im
Marrrta [24]

Answer:

7.8cm

Explanation:

5 0
2 years ago
Read 2 more answers
A plate of uniform areal density is bounded by the four curves: where and are in meters. Point has coordinates and . What is the
Natali5045456 [20]

The question is incomplete. The complete question is :

A plate of uniform areal density $\rho = 2 \ kg/m^2$ is bounded by the four curves:

$y = -x^2+4x-5m$

$y = x^2+4x+6m$

$x=1 \ m$

$x=2 \ m$

where x and y are in meters. Point $P$ has coordinates $P_x=1 \ m$ and $P_y=-2 \ m$. What is the moment of inertia $I_P$ of the plate about the point $P$ ?

Solution :

Given :

$y = -x^2+4x-5$

$y = x^2+4x+6$

$x=1 $

$x=2 $

and $\rho = 2 \ kg/m^2$ , $P_x=1 \ $ , $P_y=-2 \ $.

So,

$dI = dmr^2$

$dI = \rho \ dA  \ r^2$  ,           $r=\sqrt{(x-1)^2+(y+2)^2}$

$dI = (\rho)((x-1)^2+(y+2)^2)dx \ dy$

$I= 2 \int_1^2 \int_{-x^2+4x-5}^{x^2+4x+6}((x-1)^2+(y+2)^2) dy \ dx$

$I= 2 \int_1^2 \int_{-x^2+4x-5}^{x^2+4x+6}(x-1)^2+(y+2)^2 \  dy \ dx$

$I=2 \int_1^2 \left( \left[ (x-1)^2y+\frac{(y+2)^3}{3}\right]_{-x^2+4x-5}^{x^2+4x+6}\right) \ dx$

$I=2 \int_1^2 (x-1)^2 (2x^2+11)+\frac{1}{3}\left((x^2+4x+6+2)^3-(-x^2+4x-5+2)^3 \ dx$

$I=\frac{32027}{21} \times 2$

  $= 3050.19 \ kg \ m^2$

So the moment of inertia is  $3050.19 \ kg \ m^2$.

4 0
2 years ago
Other questions:
  • If the diving board is 3.00 m above the water, what is the diver's speed just before she enters the water?
    14·1 answer
  • Describe how the total mass of the particles before the reaction occurs compares to the total mass of the particles produced by
    9·1 answer
  • What is a phase change? List 3 examples of a phase change.<br><br><br>HELP ASAP :3 ​
    11·1 answer
  • How is the charge produced by a single Electron different to that of a Proton (if at all)?
    5·1 answer
  • Factor on which quantity of heat depend​
    10·1 answer
  • Which statement correctly describes the current in a circuit that is made up of any two resistors connected in series with a bat
    8·1 answer
  • bakit itinuring angkop na angkop ang mga nilalamab ng ibong adarna sa kalinangan at kulturang pilipino​
    8·1 answer
  • What force will accelerate a 20 kg object at 4 m/s 2? *
    5·1 answer
  • In each of the following cases, determine where the car has no
    15·1 answer
  • Which energy transformation explains why we can walk?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!