Answer:
Verdadero (True).
Explanation:
Después de la desintegración del citado virreinato, los nuevos Estados intentaron establecer sus fronteras, a menudo a través de guerras e invasiones. Cabe destacar la invasión brasileña de Uruguay o la Guerra de la Triple Alianza. En menor medida, lo hicieron a través de tratados internacionales. (After the disolution of the viceroyalship described above, the new States attempted to establish their frontier usually by wars and invasions. It is to highlight the Brazilian invasion of Uruguay or the Triple Alliance' War. In a lesser extent, they made it through international treaties.)
Answer:
A
Explanation:
Converting thermal energy into electrical energy
Answer: the boiling point elevation constant is 
Explanation:
Elevation in boiling point is given by:

= Elevation in boling point
i= vant hoff factor = 1 (for non electrolyte)
=boiling point constant = ?
m= molality

Weight of solvent (diethylether)= 330 g = 0.33 kg
Molar mass of solute (benzophenone)= 182 g/mol
Mass of solute (benzophenone) = 38.2 g


Thus the boiling point elevation constant is 
<h3>
Answer:</h3>
0.127 mol Au
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Moles
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 25.0 g Au
[Solve] moles Au
<u>Step 2: Identify Conversions</u>
[PT] Molar Mass of Au - 196.97 g/mol
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
0.126923 mol Au ≈ 0.127 mol Au
Answer:
6.61 Pounds
Solution:
Step 1: Calculate Mass of Water as;
Density = Mass ÷ Volume
Solving for Mass,
Mass = Density × Volume ------ (1)
As,
Density of Water = 1 g.cm⁻³
And,
3 L of Water = 3000 cm³
Putting values in equation 1,
Mass = 1 g.cm⁻³ × 3000 cm³
Mass = 3000 g
Step 2: Convert Grams into Pounds;
As,
1 Gram = 0.002204 Pounds
So,
3000 Grams = X Pounds
Solving for X,
X = (3000 Grams × 0.002204 Pounds) ÷ 1 Gram
X = 6.61 Pounds