Answer:
The density of solution is 1.283 g/mL.
Explanation:
Molarity of the KOH before dilution = 
Volume of the solution before dilution = 
Molarity of the KOH after dilution = 
Volume of the solution after dilution = 




(1 mL = 0.001 L)


Mass of 0.2076 moles of KOH:
0.2076 mol × 56 g/mol = 11.6256 g
Mass of KOH is solution = 11.6265 g
Mass of the solution = M
Mass percentage of solution = 30.0% of KOH

M = 38.755 g
Density of the solution , d= 

The density of solution is 1.283 g/mL.
Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate
The products are on the right side of the equation. For this one it would be 2AlPO4 + 3CaSO4
An increase in motion and less attraction between particles