For the very last question you would first divide 8,900 by 12 and the number you get will be the answer. You should get 741.66
pH of the buffer solution is 1.76.
Chemical dissociation of formic acid in the water:
HCOOH(aq) ⇄ HCOO⁻(aq) + H⁺(aq)
The solution of formic acid and formate ions is a buffer.
[HCOO⁻] = 0.015 M; equilibrium concentration of formate ions
[HCOOH] + [HCOO⁻] = 1.45 M; sum of concentration of formic acid and formate
[HCOOH] = 1.45 M - 0.015 M
[HCOOH] = 1.435 M; equilibrium concentration of formic acid
pKa = -logKa
pKa = -log 1.8×10⁻⁴ M
pKa = 3.74
Henderson–Hasselbalch equation: pH = pKa + log(cs/ck)
pH = 3.74 + log (0.015 M/1.435 M)
pH = 3.74 - 1.98
pH = 1.76
More about buffer: brainly.com/question/4177791
#SPJ4
Answer:
Isomers are defined as the molecules or polyatomic ions which have similar molecular formula but different in arrangements of atoms.
Isomers can be found in food items carrying glucose (C6H12O6), galactose or fructose, they all have the same chemical formula but differ structurally and chemically.
Glucose is found in vegetables and milk, galactose found in dairy products, and Fructose is found in fruit juices.
It's difficult to write it down, but I'll attach you a good example of hydroboration of indene. I hope you'll find it helpful.
Answer:
There was an improvement in accuracy. There was no change in precision.
Explanation:
<em>The average mass after recalibration is closer to the mass of the standard, </em>so the recalibration improved the accuracy<em> </em>(the measurement is closer to an accepted 'true' value).
The standard deviation did not change, so the precision (or how disperse the measurements are) was not affected.