Wow ! This is not simple. At first, it looks like there's not enough information, because we don't know the mass of the cars. But I"m pretty sure it turns out that we don't need to know it.
At the top of the first hill, the car's potential energy is
PE = (mass) x (gravity) x (height) .
At the bottom, the car's kinetic energy is
KE = (1/2) (mass) (speed²) .
You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down. So now, here comes the big jump. Put a comment under
my answer if you don't see where I got this equation:
KE = 0.9 PE
(1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)
Divide each side by (mass):
(0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)
(There goes the mass. As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)
Divide each side by (0.9):
(0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)
Divide each side by (9.8 m/s²):
Height = (5/9)(4900 m²/s²) / (9.8 m/s²)
= (5 x 4900 m²/s²) / (9 x 9.8 m/s²)
= (24,500 / 88.2) (m²/s²) / (m/s²)
= 277-7/9 meters
(about 911 feet)
Pretty sure that it is 0.
Answer:
Resistance of the iron rod, R = 0.000077 ohms
Explanation:
It is given that,
Area of iron rod, 
Length of the rod, L = 35 cm = 0.35 m
Resistivity of Iron, 
We need to find the resistance of the iron rod. It is given by :



So, the resistance of the rod is 0.000077 ohms. Hence, this is the required solution.
Force = mass x acceleration
15 = mass x 4
Mass = 15/4
Mass = 3.75 Kg
Answer:
student attach a save block to a horizontal spring so that the block spring system will oscillator with the block spring system released from rest horizontal position that is not the systems equilibrium position well this question regards about the energy used the answer may be 0.73 Joel ok you just try it ok verified
Explanation:
apply applied the potential energy value mean the formula MGH write it means what mass into gravitation in to height