Answer:
C. 2x+3=0 cannot be solved using the quadratic formula.
Step-by-step explanation:
Question:
Consider ΔABC, whose vertices are A (2, 1), B (3, 3), and C (1, 6); let the line segment AC represent the base of the triangle.
(a) Find the equation of the line passing through B and perpendicular to the line AC
(b) Let the point of intersection of line AC with the line you found in part A be point D. Find the coordinates of point D.
Answer:


Step-by-step explanation:
Given




Solving (a): Line that passes through B, perpendicular to AC.
First, calculate the slope of AC

Where:
--- 
--- 
The slope is:



The slope of the line that passes through B is calculated as:
--- because it is perpendicular to AC.
So, we have:


The equation of the line is the calculated using:

Where:

--- 

So, we have:

Cross multiply




Make y the subject

Solving (b): Point of intersection between AC and 
First, calculate the equation of AC using:

Where:
--- 

So:



So, we have:
and 
Equate both to solve for x
i.e.


Collect like terms

Multiply through by 5

Collect like terms

Solve for x


Substitute
in 


Take LCM


Hence, the coordinates of D is:

PQ = 40 inches
The answer is C
11 and 12 that’s the answer
Answer:
(S-2~r^2)/2~r=h
Step-by-step explanation:
I subtract -2~r^2 on both sides
S-2~r^2=2~rh
Then I divide both by 2~r
(S-2~r^2)/2~r=h