Number of electron pairs = \frac{1}{2}[V+N-C+A]
2
1
[V+N−C+A]
V = number of valence electrons present in central atom
N = number of monovalent atoms bonded to central atom
C = charge of cation
A = charge of anion
SbCl_5SbCl
5
:
In the given molecule, antimony is the central atom and there are five chlorine as monovalent atoms.
The number of electron pairs are 5 that means the hybridization will be sp^3dsp
3
B and geometry of the molecule will be trigonal bipyramidal.
Answer:
50.76 mol H2O.
Explanation:
The photosynthesis follows the equation:
6CO2 + 6H2O ---> C6H12O6 + 6O2
This means that 6 mol of H2O are needed to obtain 1 mol of C6H12O6 (see the numbers that precedes every molecule to know how many mols are in game).
So we can say that:
1 mol C6H12O6 --------- 6 mol H2O
8.46 mol C6H12O6 -----x= 8.46 x 6 : 1 = 50.76 mol H20
Answer:
In the natural world, limiting factors like the availability of food, water, shelter and space can change animal and plant populations. Other limiting factors, like competition for resources, predation and disease can also impact populations. Other changes in limiting factors will cause a population to decrease.
Answer: 12033 kJ of heat produced per kg of
formed during the combustion of benzene
Explanation:
The balanced chemical equation for combustion of benzene is :
= -6278 kJ
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
(1kg=1000g)
According to stoichiometry :
12 moles of
on combustion produce heat = 6278 kJ
Thus 23 mole of
on combustion produce heat =
Thus 12033 kJ of heat produced per kg of
formed during the combustion of benzene