Answer:
5.004kg
Explanation:
Combustion of carbon
C+O2=CO2
from the relationship of molar ratio
mass of carbon/molar mass of carbon=volume of CO2 produced\molar vol(22.4 dm3)
mass of carbon =1000kg
atomic mass of carbon =12
volume of CO2 produced=1000×22.4/12
volume of CO2 produced =1866.6dm3
from the combustion reaction equation provided
CO2 (g) + 2NH3 (g) ⟶ CO (NH2 )2 (s) + H2 O(l)
applying the same relationship of molar ratio
no of mole of CO2=no of mole of urea
therefore
vol of CO2\22.4=mass of urea/molar mass of urea
molar mass of urea=60.06g/mol
from the first calculation
vol of CO2=1866.6dm3
mass of urea=1866.6×60.06/22.4
mass of urea=5004.82kg
Answer:
HCl is the formula for Hydrochloric acid
Explanation:
- Chemical formula is a formula of a compound showing the symbols of elements present in the compound.
- Chemical formula also shows the number of atoms of each element present in a compound.
- HCl is the chemical formula of hydrochloric acid. From this formula we can tell that hydrochloric acid is made up of hydrogen and chlorine elements.
- The formula also shows that HCl contains 1 hydrogen atom and 1 chlorine atom.
Answer:
71.5g
Explanation:
The reaction equation is given as:
C + O₂ → CO₂
Mass of C = 42g
Mass of O₂ = 52g
Unknown:
Mass of CO₂ produced = ?
Solution
Now to solve this problem, we have to find limiting reactant which is the one given in short supply in this reaction.
The extent of the reaction is controlled by this reactant.
Find the number of moles of the given species;
Number of moles =
Number of moles of C =
= 3.5mol
Number of moles of O₂ =
= 1.63mol
Now;
From the balanced reaction equation;
1 mole of C reacted with 1 mole of O₂
We see that C is in excess and O₂ is the limiting reactant.
1 mole of O₂ will produce 1 mole of CO₂
So; 1.63mole of O₂ will produce 1.63 mole of CO₂
Mass of CO₂ = number of moles x molar mass
Molar mass of CO₂ = 44g/mol
Mass of CO₂ = 1.63 x 44 = 71.5g
<span>the atractions between the solute and solvent molecules must be greater than the atractions keeping the solute together and the atractions keeping the solvent togetherrr.</span>