The only thing that definitely happens in every such case is:
The container becomes heavier.
1). The little projectile is affected by friction all the way through the block.
Friction robs some kinetic energy.
2). The block is affected by friction as it scrapes along the top of the post.
Friction robs some kinetic energy.
3). The block is also affected by friction with the air (air resistance) as it
falls to the ground. Friction robs some kinetic energy.
Answer:
The car stops in 7.78s and does not spare the child.
Explanation:
In order to know if the car stops before the distance to the child, you take into account the following equation:
(1)
vo: initial speed of the car = 45km/h
a: deceleration of the car = 2 m/s^2
t: time
xo: initial distance to the child = 25m
x: final distance to the child = 0m
It is necessary that the solution of the equation (1) for time t are real.
You first convert the initial speed to m/s, then replace the values of the parameters and solve the quadratic polynomial for t:


You take the first value t1 because it has physical meaning.
The solution for t is real, then, the car stops in 7.78s and does not spare the child.
Answer:
x_{cm} = 4.644 10⁶ m
Explanation:
The center of mass is given by the equation
= 1 /
∑
Where M_{total} is the total masses of the system,
is the distance between the particles and
is the masses of each body
Let's apply this equation to our problem
M = Me + m
M = 5.98 10²⁴ + 7.36 10²²
M = 605.36 10²² kg
Let's locate a reference system located in the center of the Earth
Let's calculate
x_{cm} = 1 / 605.36 10²² [Me 0 + 7.36 10²² 3.82 10⁸]
x_{cm} = 4.644 10⁶ m
Answer:
power drain on an ideal battery, P = 0.017 W
Given:



Since,
and
are in parallel and this combination is in series with
, so,
Equivalent resistance of the circuit is given by:



power drain on an ideal battery, P =
P = 
P = 0.017 W