Answer:
0.144 kg of water
Explanation:
From Raoult's law,
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 423 mmHg ÷ 528.8 mmHg = 0.8
Let the moles of solvent (water) be y
Moles of solute (C3H8O3) = 2 mole
Total moles of solution = moles of solvent + moles of solute = (y + 2) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.8 = y/(y + 2)
y = 0.8(y + 2)
y = 0.8y + 1.6
y - 0.8y = 1.6
0.2y = 1.6
y = 1.6/0.2 = 8
Moles of solvent (water) = 8 mol
Mass of water = moles of water × MW = 8 mol × 18 g/mol = 144 g = 144/1000 = 0.144 kg
Given the values to proceed to solve the exercise, we resort to the solution of the exercise through differential equations.
The problem can be modeled through a linear equation, in the form:

With the initial conditions as,


Where Q(t) is the charge.
<em>The general solution of a linear equation is given as:</em>
<em>
</em>
Applying this definiton in our differential equation we have that

To find b and a we use the first equation and find the roots:


Then we have

To find the values of the Constant we apply the initial conditions, then

And for the derivate:



We have a system of 2x2:


Solving we have:


The we can replace at the equation and we have that the Charge at any moment is given by,

If we obtain the derivate we find also the Current, then

Answer:
1/6 m/s^2 ( about 1/6th gravity of Earth ( 9.81 m/s^2)
Explanation:
Displacement = yo + vo t - 1/2 a t^2
- 3.2 = 0 + 0 - 1/2 a(2.0)^2
- 3.2 = -2a
a = 3.2 / 2 = 1.6 m/s^2
I'm sorry, but this is not a question. What do you need to know?