Answer:
(a). The frequency of this standing wave is 0.782 kHz.
(b). The frequency of the fundamental standing wave in the air is 1.563 kHz.
Explanation:
Given that,
Length of tube = 11.0 cm
(a). We need to calculate the frequency of this standing wave
Using formula of fundamental frequency

Put the value into the formula



(b). If the test tube is half filled with water
When the tube is half filled the effective length of the tube is halved
We need to calculate the frequency
Using formula of fundamental frequency of the fundamental standing wave in the air

Put the value into the formula



Hence, (a). The frequency of this standing wave is 0.782 kHz.
(b). The frequency of the fundamental standing wave in the air is 1.563 kHz.
Answer:
Converted to heat energy
Explanation:
Some of the elastic potential energy is transformed into heat energy. When we stretch a rubber band, it is often observed that the rubber becomes warmer after the stretch and even during the stretch.
Some energy in the band initially at rest will be converted into elastic potential energy and heat energy as it is stretched .
- The heat energy is not usually accounted for since the major concern most times is the elastic energy.
- In this process, heat energy becomes a waste energy.
- By deducing the efficiency, we would find that this transformation is not efficient as predicted by one of the laws of thermodynamics.
Can you send a picture of the question or graph? There isn’t enough information here to answer
Answer:
false, each force might have a different about and a different direction
Answer:
A. 2.36
Explanation:
This is the right answer for Plato users!