Particles that are close together and locked in a place means its
a solid
Answer:
See explanation
Explanation:
The use of Uranium - 234 to generate electricity depends on a fission reaction. The uranium nuclide is bombarded by fast moving neutrons leading to a chain reaction. Control rods and moderators are used to keep the nuclear reaction under control.
As the nuclear reaction proceeds, heat is generated and steam is consequently produced. This steam is used to turn a turbine and electricity is thereby generated.
You may find the Lewis dot structure of the CH₃-Br in the attached picture.
Explanation:
In the Lewis dot structure we represent the unpaired electrons using dots.
Bromide have one electron shared with one electron from the carbon to form a covalent bond, while the remaining electrons remains unpaired. We represent the six unpaired electrons of the bromide with dots.
Learn more about:
structure of organic compounds
brainly.com/question/14122960
#learnwithBrainly
It depends on the pH if the base. but normally light colors are for bases example blue green etc
Answer:
10043.225 J
Explanation:
We'll begin by calculating the amount of heat needed to change ice to water since water at 0°C is ice. This is illustrated below:
Mass (m) = 15.5g
Latent heat of fussion of water (L) = 334J/g
Heat (Q1) =..?
Q1 = mL
Q1 = 15.5 x 334
Q1 = 5177 J
Next, we shall calculate the amount of heat needed to raise the temperature of water from 0°C to 75°C.
This is illustrated below:
Mass = 15.5g
Initial temperature (T1) = 0°C
Final temperature (T2) = 75°C
Change in temperature (ΔT) = T2 – T1 = 75 – 0 = 75°C
Specific heat capacity (C) of water = 4.186J/g°C
Heat (Q2) =?
Q2 = MCΔT
Q2 = 15.5 x 4.186 x 75
Q2 = 4866.225 J
The overall heat energy needed is given by:
QT = Q1 + Q2
QT = 5177 + 4866.225
QT = 10043.225 J
Therefore, the amount of energy required is 10043.225 J