Answer:
Approx. 4⋅g.
Explanation:
Moles of sulfuric acid =10.0⋅g98.08⋅g⋅mol−1=0.102⋅mol.
Now we have the molar quantity of sulfuric acid that react; we also have the stoichiometric equation that shows the molar equivalence of sulfuric acid, and lithium hydroxide.
Given the stoichiometry,
mass of water =0.102⋅mol×2×18.01.g.mol−1=??⋅g.
Why did I multiply the mass in this equation by 2? Am I pulling your leg?
The answer is the elements in a periodic table. <span>On the basis of the elements in the periodic table, they are divided into metals and non metals. </span>
1. An ion is a charged atom. A molecule is a neutrally-charged combination of atoms.
2. A molecule is a combination of atoms. It can consist of atoms from one or more elements. For example, an oxygen molecule comprises two oxygen atoms. A compound is a substance made up of a combination of atoms of different elements. For example, water is a compound of hydrogen and oxygen.
3. An electron dot diagram is a simple way of representing the bond and electronic structure of molecules. A formula is a written representation of the types and numbers of atoms in a molecule.
4. As above...a formula denotes which atoms are in a molecule and how many. For example, H2SO4 tells us there are two hydrogen atoms, one sulfur atom and four oxygen atoms in each molecule of sulfuric acid.
5. An ionic bond is a type of chemical bond that stems from electrostatic attraction between ions with opposite charges. A covalent bond is another type of chemical bond that involves sharing of electrons between atoms in order to achieve a stable electronic structure for the molecule as a whole.
Answer:
0.3793 M
Explanation:
The unknown metal is zinc. So the equation of the reaction is;
Zn(s) + Cu^2+(aq) -------> Zn^2+(aq) + Cu(s)
From Nernst equation;
E = E° - 0.0592/n log Q
[Cu2+] = 0.050179 M
n = 2
[Zn^2+] = ?
E = 1.074 V
E° = 0.34 - (-0.76) = 1.1 V
Substituting values;
1.074 = 1.1 - 0.0592/2 log [Zn^2+]/0.050179
1.074 - 1.1 = - 0.0592/2 log [Zn^2+]/0.050179
-0.026 = -0.0296 log [Zn^2+]/0.050179
-0.026/-0.0296 = log [Zn^2+]/0.050179
0.8784 =log [Zn^2+]/0.050179
Antilog(0.8784) = [Zn^2+]/0.050179
7.558 = [Zn^2+]/0.050179
[Zn^2+] = 7.558 * 0.050179
[Zn^2+] = 0.3793 M
Answer:
(a) The equilibrium partial pressure of BrCl (g) will be greater than 2.00 atm.
Explanation:
Q is the coefficient of the reaction and is calculated the same of the way of the equilibrium constant, but using the concentrations or partial pressures in any moment of the reaction, so, for the reaction given:
Q = (pBrCl)²/(pBr₂*pCl₂)
Q = 2²/(1x1)
Q = 4
As Q < Kp, the reaction didn't reach the equilibrium, and the value must increase. As we can notice by the equation, Q is directly proportional to the partial pressure of BrCl, so it must increase, and be greater than 2.00 atm in the equilibrium.
The partial pressures of Br₂ and Cl₂ must decrease, so they will be smaller than 1.00 atm. And the total pressure must not change because of the stoichiometry of the reaction: there are 2 moles of the gas reactants for 2 moles of the gas products.
Because is a reversible reaction, it will not go to completion, it will reach an equilibrium, and as discussed above, the partial pressures will change.