Answer: 0.0014 atm
Explanation:
Given that,
Original pressure of air (P1) = 1.08 atm
Original volume of air (T1) = 145mL
[Convert 145mL to liters
If 1000mL = 1l
145mL = 145/1000 = 0.145L]
New volume of air (V2) = 111L
New pressure of air (P2) = ?
Since pressure and volume are given while temperature is held constant, apply the formula for Boyle's law
P1V1 = P2V2
1.08 atm x 0.145L = P2 x 111L
0.1566 atm•L = 111L•P2
Divide both sides by 111L
0.1566 atm•L/111L = 111L•P2/111L
0.0014 atm = P2
Thus, the new pressure of air when the volume is decreased to 111 L is 0.0014 atm
Answer:
625 mL
Explanation:
From the question given above, the following data were obtained:
Volume of stock solution (V₁) = 250 mL
Molarity of stock solution (M₁) = 5 M
Molarity of diluted solution (M₂) = 2 M
Volume of diluted solution (V₂) =?
The volume of the diluted solution can be obtained by using the dilution formula as illustrated below:
M₁V₁ = M₂V₂
5 × 250 = 2 × V₂
1250 = 2 × V₂
Divide both side by 2
V₂ = 1250 / 2
V₂ = 625 mL
Therefore, the volume of the diluted solution is 625 mL.
A "FORCE" is required to cause acceleration or cause an object to move.